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Adapter’s Foreword

Purpose

The original of this book is an excellent work of Mark Allen Weiss. All the
fundamental topics are covered. The ADT concepts and the analysis of the
algorithms (especially the average case analysis) are emphasized. The extensive
examples are also quite helpful to the students.

Till now the original book has been introduced to Chinese students for two
years and has received positive feedbacks from many instructors and students. This
re-composition is made to trim the contents of the book so that it better fits a
second-year undergraduate course in data structures and algorithm analysis for the
Chinese students.

What’s New

The recomposition includes two major structure changes. Fitst, the review section
of mathematics has been canceled since sophomore students in China have taken
sufficient coutses in mathematics in their first-year study, including calculus, linear
algebra, and discrete mathematics. Secondly, the original Chapter 5 is moved to
follow Chapter 7, in order to show hashing as a method to break the lower bound
of searching by comparisons only.

Other minor changes include adding some interesting data structures and
methods, and rearranging part of the contents. Introduction of the sparse matrix
representation is added as an example of application of multilists in Section 3.2.
At the mean time, bucket sort and radix sort are discussed in more details in
Chapter 6 (which was Chapter 7 in the original book) instead of being given as an
example in Section 3.2. In Chapter 4, the two sections about tree traversals, namely
Sections 4.1.2 and 4.6, are merged into one and are inserted into Section 4.2.3.
Threaded binary tree is then formally introduced instead of being mentioned in
exercises only. At the beginning of Chapter 7 (which was Chapter 5 in the original
book), Hashing, a method called interpolation search is briefly discussed to make
the point that it is possible to break the lower bound if we search by methods other
than comparisons. Finally in Section 6.8, Sorting Large Structures, we introduce
table sort as a method to handle the case in which physically sorting latge structures
is required.
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PREFACE

Purpose/Goals

This book describes data structures, methods of organizing large amounts of data,
and algorithm analysis, the estimation of the running time of algorithms. As com-
puters become faster and faster, the need for programs that can handle large amounts
of input becomes more acute. Paradoxically, this requires more careful attention to
efficiency, since inefficiencies in programs become most obvious when input sizes are
large. By analyzing an algorithm before it is actually coded, students can decide if a
particular solution will be feasible. For example, in this text students look at specific
problems and see how careful implementations can reduce the time constraint for
large amounts of data from 16 years to less than a second. Therefore, no algorithm
or data structure is presented without an explanation of its running time. In some
cases, minute details that affect the running time of the implementation are explored.

Once a solution method is determined, a program must still be written. As
computers have become more powerful, the problems they must solve have become
larger and more complex, requiring development of more intricate programs. The
goal of this text is to teach students good programming and algorithm analysis skills
simultaneously so that they can develop such programs with the maximum amount
of efficiency.

This book is suitable for either an advanced data structures (CS7) course or
a first-year graduate course in algorithm analysis. Students should have some know-
ledge of intermediate programming, including such topics as pointers and recursion,
and some background in discrete math.

Approach

I believe it is important for students to learn how to program for themselves, not
how to copy programs from a book. On the other hand, it is virtually impossible to
discuss realistic programming issues without including sample code. For this reason,
the book usually provides about one-half to three-quarters of an implementation,
and the student is encouraged to supply the rest. Chapter 12, which is new to this
edition, discusses additional data structures with an emphasis on implementation
details.

vii
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PREFACE

The algorithms in this book are presented in ANSI C, which, despite some
flaws, is arguably the most popular systems programming language. The use of C
instead of Pascal allows the use of dynamically allocated arrays (see, for instance,
rehashing in Chapter 7). It also produces simplified code in several places, usually
because the and (& &) operation is short-circuited.

Most criticisms of C center on the fact that it is easy to write code that is barely
readable. Some of the more standard tricks, such as the simultaneous assignment
and testing against 0 via

if (x=y)

are generally not used in the text, since the loss of clarity is compensated by only a
few keystrokes and no increased speed. I believe that this book demonstrates that
unreadable code can be avoided by exercising reasonable care.

Overview

Chapter 1 contains review material on recursion. I believe the only way to be
comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 7.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic anal-
ysis and its major weaknesses. Many examples are provided, including an in-depth
explanation of logarithmic running time. Simple recursive programs are analyzed
by intuitively converting them into iterative programs. More complicated divide-
and-conquer programs are introduced, but some of the analysis (solving recurrence
relations) is implicitly delayed until Chapter 6, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding
these data structures using ADTs, fast implementation of these data structures, and
an exposition of some of their uses. There are almost no programs (just routines),
but the exercises contain plenty of ideas for programming assignments.

Chapter 4 covers trees, with an emphasis on search trees, including external
search trees (B-trees). The uNix file system and expression trees are used as examples.
AvL trees and splay trees are introduced but not analyzed. Seventy-five percent of the
code is written, leaving similar cases to be completed by the student. More careful
treatment of search tree implementation details is found in Chapter 12. Additional
coverage of trees, such as file compression and game trees, is deferred until Chapter
10. Data structures for an external medium are considered as the final topic in
several chapters.

Chapter 5 is about priority queues. Binary heaps are covered, and there is
additional material on some of the theoretically interesting implementations of

priority queues. The Fibonacci heap is discussed in Chapter 11, and the pairing heap
is discussed in Chapter 12.
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Chapter 6 covers sorting. It is very specific with respect to coding details and
analysis. All the important general-purpose sorting algorithms are covered and
compared. Four algorithms are analyzed in detail: insertion sort, Shellsort, heapsort,
and quicksort. The analysis of the average-case running time of heapsort is new to
this edition. External sorting is covered at the end of the chapter. o

Chapter 7 is a relatively short chapter concerning hash tables. Some analysis is
performed, and extendible hashing is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time.
This is a short and specific chapter that can be skipped if Kruskal’s algorithm is not
discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not
only because they frequently occur in practice but also because their running time is
so heavily dependent on the proper use of data structures. Virtually all of the standard
algorithms are presented along with appropriate data structures, pseudocode, and
analysis of running time. To place these problems in a proper context, a short
discussion on complexity theory (including NP-completeness and undecidability) is
provided.,

Chapter 10 covers algorithm design by examining common problem-solving
techniques. This chapter is heavily fortified with examples. Pseudocode is used in
these later chapters so that the student’s appreciation of an example algorithm is not
obscured by implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters
4 and 5 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 is new to this edition. It covers search tree algorithms, the k-d tree,
and the pairing heap. This chapter departs from the rest of the text by providing
complete and careful implementations for the search trees and pairing heap. The
material is structured so that the instructor can integrate sections into discussions
from other chapters. For example, the top-down red black tree in Chapter 12 can
be discussed under avL trees (in Chapter 4).

Chapters 1-9 provide enough material for most one-semester data structures
courses. If time permits, then Chapter 10 can be covered. A graduate course
on algorithm analysis could cover Chapters 6-11. The advanced data structures
analyzed in Chapter 11 can easily be referred to in the earlier chapters. The
discussion of NP-completeness in Chapter 9 is far too brief to be used in such a
course, Garey and Johnson’s book on NP-completeness can be used to augment this
text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material
is presented. The last exercises may address the chapter as a whole rather than a
specific section. Difficult exercises are marked with an asterisk, and more challenging
exercises have two asterisks.

ix
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References

References are placed at the end of each chapter. Generally the references either
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‘ | CHAPTER 1

Introduction

In this chapter, we discuss the aims and goals of this text and briefly review
programming concepts. We will
o See that how a program performs for reasonably large input is just as important
as its performance on moderate amounts of input.
o Briefly review recursion.

1.1. What's the Book About?

Suppose you have a group of N numbers and would like to determine the kth largest.
This is known as the selection problem. Most students who have had a programming
course or two would have no difficulty writing a program to solve this problem.
There are quite a few “obvious™ solutions.

One way to solve this problem would be to read the N numbers into an array,
sort the array in decreasing order by some simple algorithm such as bubblesort, and
then return the element in position k.

A somewhat better algorithm might be to read the first k elements into an array
and sort them (in decreasing order). Next, each remaining element is read one by
one. As a new element arrives, it is ignored if it is smaller than the kth element
in the array. Otherwise, it is placed in its correct spot in the array, bumping one
element out of the array. When the algorithm ends, the element in the kth position
is returned as the answer.

Both algorithms are simple to code, and you are encouraged to do so. The
natural questions, then, are which algorithm is better and, more important, is either
algorithm good enough? A simulation using a random file of 1 million elements
and k£ = 500,000 will show that neither algorithm finishes in a reasonable amount
of time; each requires several days of computer processing to terminate (albeit
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eventually with a correct answer). An alternative method, discussed in Chapter 6,
gives a solution in about a second. Thus, although our proposed algorithms work,
they cannot be considered good algorithms, because they are entirely impractical for
input sizes that a third algorithm can handle in a reasonable amount of time.

A second problem is to solve a popular word puzzle. The input consists of a
two-dimensional array of letters and a list of words. The object is to find the words
in the puzzle. These words may be horizontal, vertical, or diagonal in any direction.
As an example, the puzzle shown in Figure 1.1 contains the words this, two, fat,
and that. The word this begins at row 1, column 1, or (1,1), and extends to (1,4);
two goes from (1,1) to (3,1); fat goes from (4,1) to (2,3); and that goes from (4,4)
to (1,1).

Again, there are at least two straightforward algorithms that solve the problem.
For each word in the word list, we check each ordered triple (row, column,
orientation) for the presence of the word. This amounts to lots of nested for loops
but is basically straightforward.

Alternatively, for each ordered quadruple (row, column, orientation, number
of characters) that doesn’t run off an end of the puzzle, we can test whether the
word indicated is in the word list. Again, this amounts to lots of nested for loops. It
is possible to save some time if the maximum number of characters in any word is
known.

It is relatively easy to code up either method of solution and solve many of the
real-life puzzles commonly published in magazines. These typically have 16 rows, 16
columns, and 40 or so words. Suppose, however, we consider the variation where
only the puzzle board is given and the word list is essentially an English dictionary.
Both of the solutions proposed require considerable time to solve this problem and
therefore are not acceptable. However, it is possible, even with a large word list, to
solve the problem in a matter of seconds.

An important concept is that, in many problems, writing a working program is
not good enough. If the program is to be run on a large data set, then the running
time becomes an issue. Throughout this book we will see how to estimate the
running time of a program for large inputs and, more important, how to compare
the running times of two programs without actually coding them. We will see
techniques for drastically improving the speed of a program and for determining
program bottlenecks. These techniques will enable us to find the section of the code
on which to concentrate our optimization efforts.

Figure 1.1 Sample word puzzle

1 2 3 4
1 t h i s
2 w a t s
3 o a h g
4 f g d t




1.2. A BRIEF INTRODUCTION TO RECURSION

1.2. A Brief Introduction to Recursion

Most mathematical functions that we are familiar with are described by a simple
formula. For instance, we can convert temperatures from Fahrenheit to Celsius by
applying the formula

C = 5(F -32)9

Given this formula, it is trivial to write a C function; with declarations and braces
removed, the one-line formula translates to one line of C.

Mathematical functions are sometimes defined in a less standard form. As an
example, we can define a function F, valid on nonnegative integers, that satisfies
F(0) = 0 and F(X) = 2F(X — 1) + X2. From this definition we see that F(1) = 1,
F(2) = 6, F(3) = 21, and F(4) = 58. A function that is defined in terms of itself
is called recursive. C allows functions to be recursive.” It is important to remember
that what C provides is merely an attempt to follow the recursive spirit. Not all
mathematically recursive functions are efficiently (or correctly) implemented by
C’s simulation of recursion. The idea is that the recursive function F ought to be
expressible in only a few lines, just like a nonrecursive function. Figure 1.2 shows
the recursive implementation of F.

Lines 1 and 2 handle what is known as the base case, that is, the value for
which the function is directly known without resorting to recursion. Just as declaring
F(X) = 2F(X — 1) + X? is meaningless, mathematically, without including the fact
that F(0) = 0, the recursive C function doesn’t make sense without a base case.
Line 3 makes the recursive call.

There are several important and possibly confusing points about recursion. A
common question is: Isn’t this just circular logic? The answer is that although we are
defining a function in terms of itself, we are not defining a particular instance of the
function in terms of itself. In other words, evaluating F(5) by computing F(5) would
be circular. Evaluating F(5) by computing F(4) is not circular—unless, of course,
F(4) is evaluated by eventually computing F(5). The two most important issues are
probably the how and why questions. In Chapter 3, the how and why issues are
formally resolved. We will give an incomplete description here.

It turns out that recursive calls are handled no differently from any others. If F
is called with the value of 4, then line 3 requires the computation of 2 * F(3) + 4 % 4.
Thus, a call is made to compute F(3). This requires the computation of 2 * F(2) + 3
3. Therefore, another call is made to compute F(2). This means that 2 * F(1) + 2 *2
must be evaluated. To do so, F(1) is computed as 2 * F(0) + 1 * 1. Now, F(0) must
be evaluated. Since this is a base case, we know a priori that F(0) = 0. This enables
the completion of the calculation for F(1), which is now seen to be 1. Then F(2),

*Using recursion for numerical calculations is usually a bad idea. We have done so to illustrate the basic
points.
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F(3), and finally F(4) can be determined. All the bookkeeping needed to keep track
of pending function calls (those started but waiting for a recursive call to complete),
along with their variables, is done by the computer automatically. An important
point, however, is that recursive calls will keep on being made until a base case is
reached. For instance, an attempt to evaluate F(—1) will result in calls to F(—-2),
F(—3), and so on. Since this will never get to a base case, the program won’t be able
to compute the answer (which is undefined anyway). Occasionally, a much more
subtle error is made, which is exhibited in Figure 1.2. The error in the program in
Figure 1.2 is that Bad(1) is defined, by line 3, to be Bad(1). Obviously, this doesn’t
give any clue as to what Bad(1) actually is. The computer will thus repeatedly
make calls to Bad(1) in an attempt to resolve its values. Eventually, its bookkeeping
system will run out of space, and the program will crash. Generally, we would say
that this function doesn’t work for one special case but is correct otherwise. This
isn’t true here, since Bad(2) calls Bad(1). Thus, Bad(2) cannot be evaluated either.
Furthermore, Bad(3), Bad(4), and Bad(5) all make calls to Bad(2). Since Bad(2)
is unevaluable, none of these values are either. In fact, this program doesn’t work
for any value of N, except 0. With recursive programs, there is no such thing as a
“special case.”
These considerations lead to the first two fundamental rules of recursion:

1. Base cases. You must always have some base cases, which can be solved
without recursion.

2. Making progress. For the cases that are to be solved recursively, the recursive
call must always be to a case that makes progress toward a base case.

Figure 1.2 A nonterminating recursive program

int
Bad( unsigned int N )

{
/* 1%/ if(CN==0)
/% 2%/ return 0;
else
/* 3*/ return Bad( N /3 +1) + N-1;
}

Throughout this book, we will use recursion to solve problems. As an example
of a nonmathematical use, consider a large dictionary. Words in dictionaries are
deﬁ_ned in terms of other words. When we look up a word, we might not always
understand the definition, so we might have to look up words in the definition.
Likewise, we might not understand some of those, so we might have to continue
this search for a while. Because the dictionary is finite, eventually either (1) we will
come to a point where we understand all of the words in some definition (and thus
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understand that definition and retrace our path through the other definitions) or
(2) we will find that the definitions are circular and we are stuck, or that some word

we need to understand for a definition is not in the dictionary.

Our recursive strategy to understand words is as follows: If we know the
meaning of a word, then we are done; otherwise, we look the word up in the
dictionary. If we understand all the words in the definition, we are done; otherwise,
we figure out what the definition means by recursively looking up the words we
don’t know. This procedure will terminate if the dictionary is well defined but can
loop indefinitely if a word is either not defined or circularly defined.

Printing Out Numbers

Suppose we have a positive integer, N, that we wish to print out. Our routine will
have the heading PrintOut(N). Assume that the only IO routines available will
take a single-digit number and output it to the terminal. We will call this routine
PrintDigit; for example, PrintDigit(4) will output a 4 to the terminal.

Recursion provides a very clean solution to this problem. To ‘print out 76234,
we need to first print out 7623 and then print out 4. The second step is easily
accomplished with the statement PrintDigit(N%10), but the first doesn’t seem any
simpler than the original problem. Indeed it is virtually the same problem, so we can
solve it recursively with the statement PrintOut(N/10).

This tells us how to solve the general problem, but we still need to make sure
that the program doesn’t loop indefinitely. Since we haven’t defined a base case yet,
it is clear that we still have something to do. Our base.case will be. PrintDigit(N) if
0 = N < 10. Now PrintOut(N) is defined for every positive number from 0 to 9,
and larger numbers are defined in terms of a smalier positive number. Thus, there is
no cycle. The entire procedure* is shown in Figure 1.3.

We have made no effort to do this efficiently. We could have av01ded using the
mod routine (which i is very expensive) because N%10 = N —|N/10}* 10.1

Recursion and Induction

Let us prove (somewhat) rigorously that the recursive number-printing program
works. To do so, we’ll use a proof by induction.

*The term procedure refers to a function that returns void.
11X | is the largest integer that is less than or equal to X.
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void R )
PrintOut( unsigned int N ) /* Print nonnegative N */

if( N >= 10 ) '
’ PrintOut( N / 10 ); '
. PrintDigit( N- % 10 ); ‘

Figure 1.3 Recursive routine to print an integer -

THEOREM 1.1
The recursive number-printing algorithm is correct for N = 0.

PROOF (BY INDUCTION ON THE NUMBER OF DIGITS IN N):
First, if N has one digit, then the program is trivially correct, since it merely
makes a call to PrintDigit. Assume then that PrintOut works for all numbers
of k or fewer digits. A number of k + 1 digits is expressed by its first k digits
followed by its least significant digit. But the number formed by the first k digits
is exactly [N/10), which, by the inductive hypothesis, is correctly printed, and
* the last digit is Nmod 10, so the program prints out any (k + 1)-digit number
correctly. Thus, by induction, all numbers are correctly printed.

This proof probably seems a little strange in that it is vi‘rtually identical to the
algorithm description. It illustrates that in designing a recursive program, all smaller
instances of the same problem (which are on the path to a base case) may be assumed
to work correctly. The recursive program needs only to combine solutioris to smaller
problems, which are “magically” obtained by recursion, into a- solution for the
‘current problem. The mathematical justification for this is proof by induction. This
gives the third rule of recursion:’ :

3. Design rule. Assume that all the recursive calls work.

This rule is important because it means that when designing recursive programs,
you generally don’t need to know the details of the bookkeeping arrangements, and
you don’t have to try to trace through the myriad of recursive calls. Frequently, it is
extremely difficult to track down the actual sequence of recursive calls. Of course,
in many cases this is an indication of a good use of recursion, since the computer is
being allowed to work out the complicated details.

The main’ problem with' recursion is the hidden bookkeeping costs. Although
these costs are almost always justifiable, because recursive programs not only simplify
the algorithm design but also tend to give cleaner code, recursion should never be
used as a substitute for a simple for loop. We’ll discuss the overhead mvolved in
recursion in more detail in Section 3.3.

When writing recursive routines, it is crucial to keep in mind the four basic
rules of recursion:

1. Base cases. You must always have some base cases, which can be solved
without recursion.
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2. Making progress. For the cases that are to be solved recursively, the recursive
call must always be to a case that makes progress toward a base case.
3. Design rule. Assume that all the recursive calls work.

4, Compound interest rule. Never duplicate work by solving the same instance
of a problem in separate recursive calls.

The fourth rule, which will be justified (along with its nickname) in later sections,
is the reason that it is generally a bad idea to use recursion to evaluate simple
mathematical functions, such as the Fibonacci numbers. As long as you keep these
rules in mind, recursive programming should be straightforward.

Summary

This chapter sets the stage for the rest of the book. The time taken by an algorithm
confronted with large amounts of input will be an important criterion for deciding if
it is a good algorithm. {Of course, correctness is most important.) Speed is relative.
What is fast for one problem on one machine might be slow for another problem or
a different machine. We will begin to address these issues in the next chapter and
will establish a formal mathematical model.

Exercises

1.1 Write a program to solve the selection problem. Let & = N/2. Draw a table
showing the running time of your program for various values of N.

1.2 Write a program to solve the word puzzle problem. -

1.3 Write a procedure to output an arbitrary real number (which might be negative)
using only PrintDigit for I/O.

1.4 C allows statements of the form

#include filename |

which reads filename and inserts its contents in place of the include statement.
Include statements may be nested; in other words, the file filename may itself
contain an include statement, but, obviously, a file can’t include itself in any
chain. Write a program that reads in a file and outputs the file as modified by
the include statements.

1.5 Let F; be the Fibonacci numbers. Prove the following:

N-2
a. ZF, =FN—2

i=1
b. Fx < N, witho = (1 + /5)2

**c. Give a precise closed-form expression for Fy.
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(- CHAPTER 2

Algorithm Analysis

An algorithm is a clearly specified set of simple instructions to be followed to solve
a problem. Once an algorithm is given for a problem and decided (somehow) to be
correct, an important step is to determine how much in the way of resources, such
as time or space, the algorithm will, require. An algorithm that solves a problem but
requires a year is hardly of any use. Likewise, an algorithm that requires a gigabyte
of main memory is not (currently) useful on most machines.

In this chapter, we shall discuss

® How to estimate the time required for a program.

¢ How to reduce the running time of a program from days or years to fractions
of a second.

® The results of careless use of recursion.

¢ Very cfficient algorithms to raise a number to a power and to compute the
greatest common divisor of two numbers.

2.1. Mathematical Background

The analysis required to estimate the resource use of an algorithm is generally a
theoretical issue, and therefore a formal framework is required. We begin with some
mathematical definitions.

Throughout the book we will use the following four definitions:

pEFINITION: T (N') = O(f (N)) if there are positive constants ¢ and ng such that
T(N) = ¢f(N)when N = n,.

pEFINITION: T (N) = ) (g(N)) if there are positive constants ¢ and ny such that
T(N) = cg(N) when N = ny.

DEFINITION: T (N) = O(h(N)) if and only if T(N) = O(h(N)) and T(N) =
Q(h(N)).

DEFINITION: T'(N) = o(p(N)) if T(N) = O(p(N)) and T(N) # O(p(N)).
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The idea of these definitions is to establish a relative order among functions. Given
two functions, there are usually points where one function is smaller than the other
function, so it does not make sense to claim, for instance, f(N) < g(N). Thus,
we compare their relative rates of growth. When we apply this to the analysis of
algorithms, we shall see why this is the important measure.

Although 1,000N is larger than N2 for small values of N, N2 grows at a
faster rate, and thus N2 will eventually be the larger function. The turning point is
N = 1,000 in this case. The first definition says that eventually there is some point
no past which ¢ - f(N) is always at least as large as T(N), so that if constant factors
are ignored, f (N) is at least as big as T(N). In our case, we have T(N) = 1,000N,
f(N) = N2, np = 1,000, and ¢ = 1. We could also use 7y = 10 and ¢ = 100.
Thus, we can say that 1,000N = O(N2) (order N-squared). This notation is
known as Big-Ob notation. Frequently, instead of saying “order...,” one says
“Big-Oh....”

If we use the traditional inequality operators to compare growth rates, then
the first definition says that the growth rate of T(N) is less than or equal to (=)
that of f (N). The second definition, T(N) = Q(g(N)) (pronounced “omega”), says
that the growth rate of T(N) is greater than or equal to (=) that of g(N). The
third definition, T(N) = @(h(N)) (pronounced “theta”), says that the growth rate
of T(N) equals (=) the growth rate of »(N). The last definition, T(N) = o(p(N))
(pronounced “little-oh™), says that the growth rate of T(N) is less than (<) the
growth rate of p(N). This is different from Big-Oh, because Big-Oh allows the
possibility that the growth rates are the same. '

To prove that some function T(N) = O(f (N)), we usually do not apply these
definitions formally but instead use a repertoire of known results. In general, this
means that a proof (or determination that the assumption is incorrect) is a very simple
calculation and should not involve calculus, except in extraordinary circumstances
(not likely to occur in an algorithm analysis).

When we say that T(N) = O(f(N)), we are guaranteeing that the function
T(N) grows at a rate no faster than f(N); thus f(N) is an upper bound on T(N).
Since this implies that f(N) = Q(T(N)), we say that T(N) is a lower bound on
f(N).

As an example, N3 grows faster than N2, so we can say that N2 = O(N?)
or N3 = Q(N?). f(N) = N? and g(N) = 2N? grow at the same rate, so both
f(N) = O(g(N)) and f(N) = Q(g(N)) are true. When two functions grow at
the same rate, then the decision of whether or not to signify this with ®() can
depend on the particular context. Intuitively, if g(N) = 2N?, then g(N) = O(N*),
g(N) = O(N?), and g(N) = O(N?) are all technically correct, but the last option
is the best answer. Writing g(N) = ©(N?) says not only that g(N) = O(N?2), but
also that the result is as good (tight) as possible.

The important things to know are

RULE 1:

IfTi(N) = O(f(N)) and T,(N) = O(g(N)), then
(@) Ti(N) + T2(N) = max(O(f (N)), O(g(N))),
(b) Ti(N) * T,(N) = O(f(N) * g(N)),
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Function Name

c Constant
logN Logarithmic
log”? N Log-squared

N Linear

N logN

N? Quadratic
N3 Cubic

2N Exponential

Figure 2.1 Typical growth rates

RULE 2:
If T(N) is a polynomial of degree k, then T(N) = O(N*).

RULE 3:
log"N = O(N) for any constant k. This tells us that logaritbms grow very
slowly.

This information is sufficient to arrange most of the common functions by
growth rate (see Figure 2.1).

Several points are in order. First, it is very bad style to include constants or low-
order terms inside a Big-Oh. Do not say T(N) = O(2N?) or T(N) = O(N? + N).
In both cases, the correct form is T(N) = O(N?2). This means that in any analysis
that will require a Big-Oh answer, all sorts of shortcuts are possible. Lower-order
terms can generally be ignored, and constants can be thrown away. Considerably
less precision is required in these cases.

Second, we can always determine the relative growth rates of two functions f (N')
and g(N) by computing limyn -« f (N )/g(N ), using L’Hopital’s rule if necessary.”
The limit can have four possible values:

¢ The limit is 0: This means that f(N) = o(g(N)).

¢ The limit is ¢ # 0: This means that f(N) = @(g(N)).

® The limit is «: This means that g(N) = o(f(N)).

e The limit oscillates: There is no relation (this will not happen in our context).
Using this method almost always amounts to overkill. Usually the relation between
f(N) and g(N) can be derived by simple algebra. For instance, if f(N) = N log N

and g(N) = N3, then to decide which of f(N) and g(N) grows faster, one re-
ally needs to determine which of log N and N % grows faster. This is like determining

*L’Hopital’s rule states that if limy_o f(N) = = and limy_,» g(N) = ®, then limy_.f(N)/g(N) =
limy L. f'(N)/g'(N), where f'(N) and g'(N) are the derivatives of f(N) and g(N), respectively.

11
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which of log? N or N grows faster. This is a simple problem, because it is already
known that N grows faster than any power of a log. Thus, g(N) grows faster than
fN). o

One stylistic note: It is bad to say f(N) = O(g(N)), because the inequality is
implied by the definition. It is wrong to write f(N) = O(g(N)), which does not
make sense. '

2.2. Model

In order to analyze algorithms in a formal framework, we need a model of
computation. Our model is basically a normal computer, in which instructions are
executed sequentially. Our model has the standard repertoire of simple instructions,
such as addition, multiplication, comparison, and assignment, but, unlike the case
with real computers, it takes exactly one time unit to do anything (simple). To be
reasonable, we will assume that, like a modern computer, our model has fixed-size
(say, 32-bit) integers and that there are no fancy operations, such as matrix inversion
or sorting, that clearly cannot be done in one time unit. We also assume infinite
memory.

This model clearly has some weaknesses. Obviously, in real life, not all opera-
tions take exactly the same time. In particular, in our model one disk read counts
the same as an addition, even though the addition is typically several orders of
magnitude faster. Also, by assuming infinite memory, we never worry about page
faulting, which can be a real problem, especially for efficient algorithms.

2.3. What to Analyze

The most important resource to analyze is generally the running time. Several factors
affect the running time of a program. Some, such as the compiler and computer
used, are obviously beyond the scope of any theoretical model, so, although they are
important, we cannot deal with them here. The other main factors are the algorithm
used and the input to the algorithm.

Typically, the size of the input is the main consideration. We define two
functions, T,vg(N) and Tyorst(N), as the average and worst-case running time,
respectively, used by an algorithm on input of size N. Clearly, T,yg(N) =< Tyorst(N).
If there is more than one input, these functions may have more than one argu-
ment,

Generally, the quantity required is the worst-case time, unless otherwise spec-
ified. One reason for this is that it provides a bound for all input, including
particularly bad input, which an average-case analysis does not provide. The other
reason is that average-case bounds are usually much more difficult to compute. In
some instances, the definition of “average” can affect the result. (For instance, what
is average input for the following problem?)
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As an example, in the next section, we shall consider the following problem:

MAXIMUM SUBSEQUENCE SUM PROBLEM:

Given (possibly negative) integers A1, As, ..., AN, find the maximum value
of >, _; Ax. (For convenience, the maximum subsequence sum is 0 if all the
integers are negative.)

Example:
For input —2, 11, —4, 13, -5,

This problem is interesting mainly because there are so many algorithms to
solve it, and the performance of these algorithms varies drastically. We will discuss
four algorithms to solve this problem. The running time on some computer (the
exact computer is unimportant) for these algorithms is given in Figure 2.2.

There are several important things worth noting in this table. For a small
amount of input, the algorithms all run in a blink of the eye, so if only a small
amount of input is expected, it might be silly to expend a great deal of effort to
design a clever algorithm. On the other hand, there is a large market these days
for rewriting programs that were written five years ago bascd ona no-longer-valid
assumption of small input size. These programs are now too slow; because they used
poor algorithms. For large amounts of input, algonthm 4 is clearly the best chonce
(although algorithm 3 is still usable). :

Second, the times given do not include the time requ:red to read the 1nput For
algorithm 4, the time merely to read in the input from a disk is likely to be an order
of magnitude larger than the time required to solve the problem: This is typncal of
many efficient algorithms. Reading the data ls;generally the bottleneck; once the
data are read, the problem can be solved qm kly s th
is not true, and significant computer resources must be used. Thus it is lmportant
that, whenever possible, algorithms be efficient enough not to be the bottleneck ofa
problem.

Figure 2.3 shows the growth rates of the running tmles of the four algorithms.
Even though this graph encompasses only values of N ranging from 10 to 100, the
relative growth rates are still evident. Although the graph for algorlthm 3 seems
linear, it is easy to verify that it is not by using a straight-edge (or piece of paper).
Figure 2.4 shows the performance for larger values. It dramatically illustrates how
useless inefficient algorithms are for even moderately large amounts of input.

—2, the answer is 20 (A2 through Aas).

Figure 2.2 Running times of several algorithms for maximum subsequence sum
(in seconds)

Algorithm 1 2 3 4
Time a(i®) ow?) O(V logN) o)
Input N =10 0.00103 0.00045 0.00066 0.00034
Size N = 100 0.47015 0.01112 0.00486 0.00063
N = 1,000 448.77 1.1233 .0.05843 0.00333
N = 10,000 NA 111.13 0.68631 0.03042
N = 100,000 NA NA 8.0113 0.29832

13
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Figure 2.4 Plot (N vs. seconds) of various maximum subsequence sum algorithms

2.4. Running Time Calculations

There are several ways to estimate the running time of a program. The previous
table was obtained empirically. If two programs are expected to take similar times,

probably the best way to decide which is faster is to code them both up and run
them!
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Generally, there are several algorithmic ideas, and we would like to eliminate
the bad ones early, so an analysis is usually required. Furthermore, the ability to do
an analysis usually provides insight into designing efficient algorithms. The analysis
also generally pinpoints the bottlenecks, which are worth coding carefully.

To simplify the analysis, we will adopt the convention that there are no particular
units of time. Thus, we throw away leading constants. We will also throw away
low-order terms, so what we are essentially doing is computing a Big-Oh running
time. Since Big-Oh is an upper bound, we must be careful never to underestimate the
running time of the program. In effect, the answer provided is a guarantee that the
program will terminate within a certain time period. The program may stop earlier
than this, but never later.

2.4.1. ASimple Example

Here is a simple program fragment to calculate Zf-\il i3;

int :
Sum( int N )
{
int i, PartialSum;
/* 1*/ PartialSum = 0;
/% 2%/ for( i =1; i <= N; i++ )
/* 3%/ PartialSum += i * i * i,
/* 4%/ return PartialSum;
}

The analysis of this program is simple. The declarations count for no time.
Lines 1 and 4 count for one unit each. Line 3 counts for four units per time executed
(two multiplications, one addition, and one assignment) and is executed N times,
for a total of 4N units. Line 2 has the hidden costs of initializing 7, testing i = N,
and incrementing i. The total cost of all these is 1 to initialize, N + 1 for all the
tests, and N for all the increments, which is 2N + 2. We ignore the costs of calling
the function and returning, for a total of 6N + 4. Thus, we say that this function is
O(N).

If we had to perform all this work every time we needed to analyze a program,
the task would quickly become infeasible. Fortunately, since we are giving the
answer in terms of Big-Oh, there are lots of shortcuts that can be taken without
affecting the final answer. For instance, line 3 is obviously an O(1) statement (per
execution), so it is silly to count precisely whether it is two, three, or four units; it
does not matter. Line 1 is obviously insignificant compared with the for loop, so it
is silly to waste time here. This leads to several general rules.

2.4.2. General Rules

RULE 1—FOR LOOPS:

The running time of a for loop is at most the running time of the statements
inside the for loop (including tests) times the number of iterations.

15
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RULE 2—NESTED FOR LOOPS:
Analyze these inside out. The total running time of a statement inside a group
of nested loops is the running time of the statement multiplied by the product

of the sizes of all the for loops.
As an example, the following program fragment is O(N?2):
for( i =0; 1 < N; i++)

for( j = 0; j < N; j++ )
k++;

RULE 3—CONSECUTIVE STATEMENTS:
These just add (which means that the maximum is the one that counts; see
rule 1(a) on page 16).

As an example, the following prbgram fragment, which has O(N) work followed
by O(N?) work, is also O(N?2):

for( i =0; 1 < N; i++ )

AL i1=0;
forC i =0; i < N; i++ )
for( j =0; j < N; j++ )
ALi 1 +=ALJ ]+ 1 +73;
RULE 4—IFVELSE:
For the fragment
if( Condition )
S1
else
S2

the running time of an iffelse statement is never more than the running time of
the test plus the larger of the running times of S1 and S2.

Clearly, this can be an overestimate in some cases, but it is never an underestimate.

Other rules are obvious, but a basic strategy of analyzing from the inside (or
deepest part) out works. If there are function calls, these must be analyzed first. If
there are recursive procedures, there are several options. If the recursion is really
just a thinly veiled for loop, the analysis is usually trivial. For instance, the following
function is really just a simple loop and is O(N ):

long 1int
Factorial( int N )
{
ifFCN <=1)
return 1;
else
return N * Factorial( N - 1);
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This example is really a poor use of recursion. When recursion is properly used,
it is difficult to convert the recursion into a simple loop structure. In this case, the
analysis will involve a recurrence relation that needs to be solved. To see what might
happen, consider the following program, which turns out to be a horrible use of
recursion: :

Tong int
Fib( int N )
{
/* 1*/ ifCN <=1)
/* 2%/ return 1;
else
/* 3%/ ’ return Fib( N - 1 ) + Fib( N - 2 );
}

At first glance, this seems like a very clever use of recursion. However, if the
program is coded up and run for values of N around 30, it becomes apparent that
this program is terribly inefficient. The analysis is fairly simple. Let T(N) be the
running time for the function Fib(N). If N = 0 or N = 1, then the running time is
some constant value, which is the time to do the test at line 1 and return. We can
say that T(0) = T(1) = 1 because constants do not matter. The running time for
other values of N is then measured relative to the running time of the base case. For
N > 2, the time to execute the function is the constant work at line 1 plus the work
at line 3. Line 3 consists of an addition and two function calls. Since the function
calls are not simple operations, they must be analyzed by themselves. The first
function call is Fib(N — 1) and hence, by the definition of T, requires T (N — 1) units
of time. A similar argument shows that the second function call requires T(N - 2)
units of time. The total time required is then T(N — 1) + T(N — 2) + 2, where the
2 accounts for the work at line 1 plus the addition at line 3. Thus, for N = 2, we
have the following formula for the running time of Fib(N):

T(N)=T(N—-1)+T(N—-2)+2

Since Fib(N) = Fib(N — 1) + Fib(N — 2), it is easy to show by induction that
T(N) = Fib(N). In Section 1.2.5, we showed that Fib(N) < (5/3)N. A similar
calculation shows that (for N > 4) Fib(N) = (3/2)N, and so the running time of
this program grows exponentially. This is about as bad as possible. By keeping a
simple array and using a for loop, the running time can be reduced substantially.

This program is slow because there is a huge amount of redundant work being
performed, violating the fourth major rule of recursion (the compound interest rule),
which was presented in Section 1.3. Notice that the first call on line 3, Fib(N — 1),
actually computes Fib(N — 2) at some point. This information is thrown away
and recomputed by the second call on line 3. The amount of information thrown
away compounds recursively and results in the huge running time. This is perhaps
the finest example of the maxim “Don’t compute anything more than once” and
should not scare you away from using recursion. Throughout this book, we shall
see outstanding uses of recursion.
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2.4.3. Solutions for the Maximum Subsequence Sum Problem

We will now present four algorithms to solve the maximum subsequence sum
problem posed earlier. The first algorithm, which merely exhaustively tries all
possibilities, is depicted in Figure 2.5. The indices in the for loop reflect the fact that
in C, arrays begin at 0, instead of 1. Also, the algorithm does not compute the actual
subsequences; additional code is required to do this.

Convince yourself that this algorithm works (this should not take much con-
vincing). The running time is O(N?) and is entirely due to lines 5 and 6, which
consist of an O(1) statement buried inside three nested for loops. The loop at line 2
is of size N.

The second loop has size N — i which could be small but could also be of size
N. We must assume the worst, with the knowledge that this could make the final
bound a bit high. The third loop has size j — i + 1, which, again, we must assume
is of size N. The total is O(1- N - N - N) = O(N?). Statement 1 takes only O(1)
total, and statements 7 and 8 take only O(N?) total, since they are easy expressions
inside only two loops.

It turns out that a more precise analysis, taking into account the actual size
of these loops, shows that the answer is ®(N?) and that our estimate above was a
factor of 6 too high (which is all right, because constants do not matter). This is
generally true in these kinds of problems. The precise analysis is obtained from the
sum SN Z;‘:l > k=; 1, which tells how many times line 6 is executed. The sum
can be evaluated inside out. In particular, we willuse the formulas for the sum of
the first N integers and first N squares. First we have

i1=;‘—i+1
k=i

Figure 2.5 Algorithm 1

int
MaxSubsequenceSum( const int A{ ], int N )
{
int ThisSum, MaxSum, i, j, k;
/* 1%/ MaxSum = 0;
/* 2%/ for( i =0; i < N; i++ )
/* 3%/ for( j =1; 3 < N; j++ )
{
/* 4%/ ThisSum = 0;
/* 5%/ for( k = 1; k <= j; k++ )
/* 6%/ ThisSum += A[ k 1;
/* 7%/ if( ThisSum > MaxSum )
/* 8%/ MaxSum = ThisSum;
}
/* 9%/ return MaxSum;
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Next we evaluate

N-1 —
Z(j—i+1)=(N 5

j=i

i+ 1)(N —i)

This sum is computed by observing that it is just the sum of the first N — 7 integers.
To complete the calculation, we evaluate

(N—-i+1)}(N —1) Z(N—t+1)(N—z+2)

N-1

>

i=0

2 2
5‘21' (N+ )Z 5 (N +3N+2)le
i= = =
IN(N+1)2N +1) 3\N(N+1) N2+3N+2
2 3 (N+2) 2 7 N
N3 +3N2 +2N
6

We can avoid the cubic running time by removing a for loop. This is not
always possible, but in this case there are an awful lot of unnecessary computations
present in the algorithm. The inefficiency that the improved algorithm corrects can
be seen by noticing that >} _, Ay = A; + >} _ Ak, so the computation at lines §
and 6 in algorithm 1 is unduly expensive. Figure 2.6 shows an improved algorithm,
Algorithm 2 is clearly O(N?2); the analysis is even simpler than before.

There is a recursive and relatively complicated O(N log N) solution to this
problem, which we now describe. If there didn’t happen to be an O(N) (linear)

Figure 2.6 Algorithm 2

/*
/*

/*
/-A'

/-k
/*
/*

/*

1*/
2%/

3%/
4'.’:/

5%/
6%/
7*/

8*/

int
MaxSubSequenceSum( const int A[ ], int N )

{

int ThisSum, MaxSum, i, j;

MaxSum = 0
for( i =0; i < N; i++ )
{
ThisSum = 0;
for( 3 =1; j < N; j++ )
{
ThisSum += A[ j 1;
if( ThisSum > MaxSum )
MaxSum = ThisSum;
}
}.

return MaxSum;
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solution, this would be an excellent example of the power of recursion. The
algorithm uses a “divide-and-conquer” strategy. The idea is to split the problem
into two roughly equal subproblems, which are then solved recursively. This is the
“divide” part. The “conquer” stage consists of patching together the two solutions
of the subproblems, and possibly doing a small amount of additional work, to arrive
at a solution for the whole problem.

In our case, the maximum subsequence sum can be in one of three places. Either
it occurs entirely in the left half of the input, or entirely in the right half, or it crosses
the middle and is in both halves. The first two cases can be solved recursively. The
last case can be obtained by finding the largest sum in the first half that includes
the last element in the first half, and the largest sum in the second half that includes
the first element in the second half. These two sums can then be added together. As
an example, consider the following input:

First Half Second Half
4 -3 5 =2 -1 2 6 -2

The maximum subsequence sum for the first half is 6 (elements A; through A3) and
for the second half is 8 (elements Ag through A7).

The maximum sum in the first half that includes the last element in the first
half is 4 (clements A; through A4), and the maximum sum in the second half that
includes the first element in the second half is 7 (elements As though A7). Thus, the
maximum sum that spans both halves and goes through the middle is 4 + 7 = 11
(elements A; through A5).

We see, then, that among the three ways to form a large maximum subsequence,
for our example, the best way is to include elements from both halves. Thus, the
answer is 11. Figure 2.7 shows an implementation of this strategy.

The code for algorithm 3 deserves some comment. The general form of the call
for the recursive procedure is to pass the input array along with the left and right
borders, which delimit the portion of the array that is operated upon, A one-line
driver program sets this up by passing the borders 0 and N — 1 along with the array.

Lines 1 to 4 handle the base case. If Left == Right, there is one element, and
it is the maximum subsequence if the element is nonnegative. The case Left > Right
is not possible unless N is negative (although minor perturbations in the code could
mess this up). Lines 6 and 7 perform the two recursive calls. We can see that the
recursive calls are always on a smaller problem than the original, although minor
perturbations in the code could destroy this property. Lines 8 to 12 and 13 to 17
calculate the two maximum sums that touch the center divider. The sum of these
two values is the maximum sum that spans both halves. The pseudoroutine Max3
returns the largest of the three possibilities.

Algorithm 3 clearly requires more effort to code than either of the two previous
algorithms. However, shorter code does not always mean better code. As we have
seen in the earlier table showing the running times of the algorithms, this algorithm
is considerably faster than the other two for all but the smallest of input sizes.
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/*
/'A'
/*

/*
/'k
/*
/*

/*
/*

1*/
2%/
3*/

4%/
5%/
6/
7+/

8*/
9%/

/*10%/

/¥11%/

/*12*/

/*13*/
/*14*/

/*15%/
/*16%/
/¥17*%/

/*18%/
/*19*/

static int _ K
MaxSubSum( const int A[ 1, int Left, int Right )

{

}

int

int MaxLeftSum, MaxRightSum;

int MaxLeftBorderSum, MaxRightBorderSum;
int LeftBorderSum, RightBorderSum;

int Center, 1i;

if( Left == Right ) /* Base Case */
ifCA[ Left ] >0)
return A[ Left ];
else
return 0;

Center = ( Left + Right ) / 2;
MaxLeftSum = MaxSubSum( A, Left, Center );
MaxRightSum = MaxSubSum( A, Center + 1, Right );

MaxLeftBorderSum = 0; LeftBorderSum = O
for( i = Center; i >= Left; i-- )

LeftBorderSum += A[ i 1;
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;

}

MaxRightBorderSum = 0; RightBorderSum = 0;
for( i = Center + 1; i <= Right; i++ )

{
RightBorderSum += A[ i ];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
} .

return Max3( MaxLeftSum, MaxRightSum,
MaxLeftBorderSum + MaxRightBorderSum );

MaxSubsequenceSum( const int A[ ], int N )

{
}

return MaxSubSum( A, 0, N - 1 );

Figure 2.7 Algorithm 3
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The running time is analyzed in much the same way as for the program that
computes the Fibonacci numbers. Let T(N) be the time it takes to solve a maximum
subsequence sum problem of size N.If N = 1, then the program takes some constant
amount of time to execute lines 1 to 4, which we shall call one unit. Thus, T(1) = 1.
Otherwise, the program must perform two recursive calls, the two for loops between
lines 9 and 17, and some small amount of bookkeeping, such as lines 5 and 18.
The two for loops combiné to touch every element from Ag to Ax-1, and there is
constant work inside the loops, so the time expended in lines 9 to 17 is O(N). The
code in lines 1 to 5, 8, 13, and 18 is all a constant amount of work and can thus
be ignored compared with O(N). The remainder of the work is performed in lines
6 and 7. These lines solve two subsequence problems of size N/2 (assuming N is
even). Thus, these lines take T (N/2) units of time each, for a total of 2T (N/2). The
total time for the algorithm then is 2T (N/2) + O(N). This gives the equations

T(1)=1
T(N) = 2T(N/2) + O(N)

To simplify the calculations, we can replace the O(N) term in the equation above
with Nj since T(N') will be expressed in Big-Oh notation anyway, this will not affect
the answer. In Chapter 7, we shall see how to solve this equation rigorously. For now,
ifT(N) = 2T(N/2)+N,and T(1) = 1,thenT(2) = 4 = 2*2,T(4) = 12 = 4%3,
T(8) = 32 = 8%4,and T(16) = 80 = 16*5. The pattern that is evident, and can be
derived, is that if N = 2%, then T(N) = N*(k+1) = NlogN +N = O(N logN).

This analysis assumes N is even, since otherwise N/2 is not defined. By the
recursive nature of the analysis, it is really valid only when N is a power of 2, since
otherwise we eventually get a subproblem that is not an even size, and the equation
is invalid. When N is not a power of 2, a somewhat more complicated analysis is
required, but the Big-Oh result remains unchanged.

In future chapters, we will see several clever-applications of recursion. Here,
we present a fourth algorithm to find the maximum subsequence sum. This algorithm
is simpler to implement than the recursive algorithm and also is more efficient. It is
shown in Figure 2.8.

It should be clear why the time bound is correct, but it takes a little thought to
see why the algorithm actually works; this is left to the reader. An extra advantage
of this algorithm is that it makes only one pass through the data, and once Afi] is
read and processed, it does not need to be remembered. Thus, if the array is on a
disk or tape, it can be read sequentially, and there is no need to store any part of
it in main memory. Furthermore, at any point in time, the algorithm can correctly
give an answer to the subsequence problem for the data it has already read (the
other algorithms do not share this property). Algorithms that can do this are called
on-line algorithms. An on-line algorithm that requires only constant space and runs
in linear time is just about as good as possible.

2.4.4. Logarithms in the Running Time

The most confusing aspect of analyzing algorithms probably centers around
the logarithm. We have already seen that some divide-and-conquer algorithms will
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int
MaxSubseguenceSum( const int A[ ], int N )
{
int ThisSum, MaxSum, j;
/* 1%/ ThisSum = MaxSum = O;
/* 2%/ for( j = 0; j < N; j++ )
{
/* 3%/ ThisSum += A[ j 1;
/% 4%/ if( ThisSum > MaxSum )
/* 5%/ MaxSum = ThisSum;
/¥ 6%/ else if( ThisSum < 0 )
/* 7/ ThisSum = 0;
}
/* 8%/ return MaxSum;
}

Figure 2.8 Algorithm 4

run in O(N log N) time. Besides divide-and-conquer algorithms, the most frequent
appearance of logarithms centers around the following general rule: An algorithm is
O(log N) if it takes constant (O(1)) time to cut the problem size by a fraction (which
is usually 1). On the other hand, if constant time is required to merely reduce the
problem by a constant amount (such as to make the problem smaller by 1), then the
algorithm is O(N).

It should be obvious that only special kinds of problems can be O(log N). For
instance, if the input is a list of N numbers, an algorithm must take ((N) merely to
read the input in. Thus, when we talk about O(log N) algorithms for these kinds of
problems, we usually presume that the input is preread. We provide three examples
of logarithmic behavior.

Binary Search

The first example is usually referred to as binary search.

BINARY SEARCH:

Given an integer X and integers Ao, A1, ..., An-1, which are presorted and
already in memory, find i such that A; = X, orreturni = —1if X is not in the
input.

The obvious solution consists of scanning through the list from left to right
and runs in linear time. However, this algorithm does not take advantage of the
fact that the list is sorted, and is thus not likely to be best. A better strategy is to
check if X is the middle element. If so, the answer is at hand. If X is smaller than the
middle element, we can apply the same strategy to the sorted subarray to the left of the
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int .
BinarySearch( const ElementType A[ ], ElementType X, int N
{
int Low, Mid, High;
J* 1%/ Low = 0; High = N - 1;
/* 2%/ while( Low <= High )
{
/* 3%/ Mid = ( Low + High ) / 2;
/¥ 4%/ ifC AL Mid ] < X)
/* 5%/ Low = Mid + 1;
else
/* 6%/ if( AL Mid ] > X))
/* 7%/ High = Mid - 1;
else
/* 8%/ return Mid; /* Found */
}
/¥ 9%/ return NotFound; /* NotFound is defined as -1 */
} -

Figure 2.9 Binary search

middle element; likewise, if X is larger than the middle element, we look to the right
half. (There is also the case of when to stop.) Figure 2.9 shows the code for binary
search (the answer is Mid). As usual, the code reflects C’s convention that arrays
begin with index 0.

Clearly, all the work done inside the loop takes O(1) per iteration, so the analysis
requires determining the number of times around the loop. The loop starts with
High — Low = N — 1 and finishes with High — Low = —1. Every time through
the loop the value High — Low must be at least halved from its previous value; thus,
the number of times around the loop is at most [log(N — 1)} + 2. (As an example, if
High — Low = 128, then the maximum values of High — Low after each iteration
are 64, 32, 16, 8,4, 2, 1, 0, —1.) Thus, the running time is O(log N ). Equivalently,
we could write a recursive formula for the running time, but this kind of brute-force
approach is usually unnecessary when you understand what is really going on
and why.

Binary search can be viewed as our first data structure implementation. It
supports the Find operation in O(log N ) time, but all other operations (in particular
Insert) require O(N ) time. In applications where the data are static (that is, insertions
and deletions are not allowed), this could be very useful. The input would then need
to be sorted once, but afterward accesses would be fast. An example is a program
that needs to maintain information about the periodic table of elements (which
arises in chemistry and physics). This table is relatively stable, as new elements are
added infrequently. The element names could be kept sorted. Since there are only
about 110 elements, at most eight accesses would be required to find an element.
Performing a sequential search would require many more accesses.
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Euclid’s Algorithm

A second example is Euclid’s algorithm for computing the greatest common divisor.
The greatest common divisor (Ged) of two integers is the largest integer that divides
both. Thus, Ged(50,15) = §. The algorithm in Figure 2.10 computes G¢cd(M, N),
assuming M = N. (If N > M, the first iteration of the loop swaps them.)

The algorithm works by continually computing remainders until 0 is reached.
The last nonzero remainder is the answer. Thus, if M = 1,989 and N = 1,590, then
the sequence of remainders is 399, 393, 6, 3, 0. Therefore, Gcd(1989,1590) = 3.
As the example shows, this is a fast algorithm.

As before, estimating the entire running time of the algorithm depends on
determining how long the sequence of remainders is. Although log N seems like a
good answer, it is not at all obvious that the value of the remainder has to decrease
by a constant factor, since we see that the remainder went from 399 to only 393
in the example. Indeed, the remainder does not decrease by a constant factor in
one iteration. However, we can prove that after two iterations, the remainder is at
most half of its original value. This would show that the number of iterations is at
most 2log N = O(log N) and establish the running time. This proof is easy, so we
include it here. It follows directly from the following theorem.

THEOREM 2.1.
IfM > N, then M mod N < M/2.

PROOF:

There are two cases. If N = M/2, then since the remainder is smaller than N,
the theorem is true for this case. The other case is N > M/2. But then N goes
into M once with a remainder M — N < M/2, proving the theorem.

One might wonder if this is the best bound possible, since 2 log N is about 20
for our example, and only seven operations were performed. It turns out that the

Figure 2.10 Euclid’s algorithm

unsigned 1int
Gcd( unsigned int M, unsigned int N )

{

unsigned int Rem;
/¥ 1%/ while( N> 0 )

{
/* 2%/ Rem = M % N;
/* 3*/ M= N;
/¥ 4%/ N = Rem;

1
/* 5%/ return M;
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constant can be improved slightly, to roughly 1.44 log N, in the worst case (which
is achievable if M and N are consecutive Fibonacci numbers). The average-case
performance of Euclid’s algorithm requires pages and pages of highly sophisticated
mathematical analysis, and it turns out that the average number of iterations is
about (12In2In N)/#?* + 1.47.

Exponentiation

Our last example in this section deals with raising an integer to a power (which is
also an integer). Numbers that result from exponentiation are generally quite large,
so an analysis works only if we can assume that we have a machine that can store
such large integers (or a compiler that can simulate this). We will count the number
of multiplications as the measurement of running time.

The obvious algorithm to compute XN uses N — 1 multiplications. The recursive
algorithm in Figure 2.11 does better. Lines 1 to 4 handle the base case of the
recursion. Otherwise, if N is even, we have XN = XN2. XN2 and if N is odd,
XN = Y(N-1)2, x(N~1)2 - X.

For instance, to compute X¢2, the algorithm does the following calculations,
which involves only nine multiplications:

X3 = (XZ)X,X7 - (X3)2X,X15 — (X7)2X,X31 - (X15)2X,X62 - (XJI)Z

The number of multiplications required is clearly at most 2 log N, because at most
two multiplications (if N is odd) are required to halve the problem. Again, a
recurrence formula can be written and solved. Simple intuition obviates the need for
a brute-force approach.

It is sometimes interesting to see how much the code can be tweaked without
affecting correctness. In Figure 2.11, lines 3 to 4 are actually unnecessary, because
if N is 1, then line 7 does the right thing. Line 7 can also be rewritten as

/¥ 7%/ return Pow( X, N - 1) * X;
without affecting the correctness of the program. Indeed, the program will still run
in O(log N), because the sequence of multiplications is the same as before. However,

Figure 2.11 Efficient exponentiation

Tong int
Pow( long int X, unsigned in N )

{
/* 1%/ if(N==0)

/% 2%/ return 1;

/* 3%/ if(N==1)

/* 4%/ return X;

/* 5%/ if( IsEven( N ) )

/* 6%/ return Pow( X * X, N/ 2 );
else

/% 7%/ return Pow( X * X, N / 2 ) * X;
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all of the following alternatives for line 6 are bad, even though they look correct:

/* 6a*/ return Pow( Pow( X, 2 ), N/ 2 );
/* 6b*/ return Pow( Pow( X, N / 2 ), 2 );
/* 6c*/ return Pow( X, N/ 2 ) * Pow( X, N/ 2 );

Both lines 6a and 6b are incorrect because when N is 2, one of the recursive calls to
Pow has 2 as the second argument. Thus no progress is made, and an infinite loop
results (in an eventual crash).

Using line 6c affects the efficiency, because there are now two recursive calls
of size N/2 instead of only one. An analysis will show that the running time is
no longer O(log N). We leave it as an exercise to the reader to determine the new
running time.

2.4.5. Checking Your Analysis

Once an analysis has been performed, it is desirable to see if the answer is correct
and as good as possible. One way to do this is to code up the program and see if
the empirically observed running time matches the running time predicted by the
analysis. When N doubles, the running time goes up by a factor of 2 for linear
programs, 4 for quadratic programs, and 8 for cubic programs. Programs that run
in logarithmic time take only an additive constant longer when N doubles, and
programs that run in O(N log N ) take slightly more than twice as long to run under
the same circumstances. These increases can be hard to spot if the lower-order terms
have relatively large coefficients and N is not large enough. An example is the jump
from N = 10 to N = 100 in the running time for the various implementations of
the maximum subsequence sum problem. It also can be very difficult to differentiate
linear programs from O(N log N') programs purely on empirical evidence.

Another commonly used trick to verify that some program is O(f(N)) is to
compute the values T(N)/f(N) for a range of N (usually spaced out by factors of
2), where T(N) is the empirically observed running time. If f(N) is a tight answer
for the running time, then the computed values converge to a positive constant. If
f(N) is an overestimate, the values converge to zero. If f(N) is an underestimate
and hence wrong, the values diverge.

As an example, the program fragment in Figure 2.12 computes the probability
that two distinct positive integers, less than or equal to N and chosen randomly, are
relatively prime. (As N gets large, the answer approaches 6/72.)

You should be able to do the analysis for this program instantaneously. Figure
2.13 shows the actual observed running time for this routine on a real computer. The
table shows that the last column is most likely, and thus the analysis that you should
have gotten is probably correct. Notice that there is not a great deal of difference
between O(N?) and O(N?2 log N, since logarithms grow so slowly.

2.4.6. A Grain of Salt

Sometimes the analysis is shown empirically to be an overestimate. If this is the
case, then either the analysis needs to be tightened (usually by a clever observation),
or it may be that the average running time is significantly less than the worst-case
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Rel = 0; Tot = O;
for( i = 1; i <= N; i++)
for( j =1 + 1; j <= N; j++ )
{
Tot++;
if( Ged( i, 7 ) ==1)
Rel++;

printf( "Percentage of relatively prime pairs is %f\n",
( double ) Rel / Tot );

Figure 2.12 Estimate the probability that two random
numbers are relatively prime

N CPU time (7') T/N? T/N? T/N? logN
100 022 .002200 .000022000 .0004777
200 056 .001400 .000007000 .0002642
300 118 .001311 .000004370 0002299
400 207 .001294 .000003234 .0002159
500 318 .001272 .000002544 .0002047
600 466 .001294 .000002157 .0002024
700 644 .001314 .000001877 .0002006
800 846 .001322 .000001652 .0001977
900 1,086 .001341 .000001490 .0001971

1,000 1,362 001362 .000001362 .0001972
1,500 3,240 .001440 .000000960 .0001969
2,000 5,949 .001482 .000000740 .0001947
4,000 25,720 .001608 .000000402 .0001938

Figure 2.13 Empirical running times for the previous routine

running time and no improvement in the bound is possible. For many complicated
algorithms the worst-case bound is achievable by some bad input but is usually an
overestimate in practice. Unfortunately, for most of these problems, an average-case
analysis is extremely complex (in many cases still unsolved), and a worst-case bound,
even though overly pessimistic, is the best analytical result known.

Summary

This chapter gives some hints on how to analyze the complexity of programs.
Unfortunately, it is not a complete guide. Simple programs usually have simple
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analyses, but this is not always the case. As an example, later in the text we shall see
a sorting algorithm (Shellsort, Chapter 6) and an algorithm for maintaining disjoint
sets (Chapter 8), each of which requires about 20 lines of code. The analysis of
Shellsort is still not complete, and the disjoint set algorithm has an analysis that is
extremely difficult and requires pages and pages of intricate calculations. Most of
the analyses that we will encounter here will be simple and involve counting through
loops.

An interesting kind of analysis, which we have not touched upon, is lower-bound
analysis. We will see an example of this in Chapter 6, where it is proved that any
algorithm that sorts by using only comparisons requires (N log N) comparisons
in the worst case. Lower-bound proofs are generally the most difficult, because they
apply not to an algorithm but to a class of algorithms that solve a problem.

We close by mentioning that some of the algorithms described here have real-
life application. The Ged algorithm and the exponentiation algorithm are both
used in cryptography. Specifically, a 200-digit number is raised to a large power
(usually another 200-digit number), with only the low 200 or so digits retained after
each multiplication. Since the calculations require dealing with 200-digit numbers,
efficiency is obviously important. The straightforward algorithm for exponentiation
would require about 102 multiplications, whereas the algorithm presented requires
only about 1,200.

Exercises

2.1 Order the following functions by growth rate: N, /N, N5, N2, NlogN,
N loglog N, N log” N, N log(N2), 2/N, 2N 2N2_ 37, NZ?log N, N3. Indicate
which functions grow at the same rate.

2.2 Supgose Ti(N) = O(f(N)) and To(N) = O(f (N)). Which of the following are
true?

a. Ti(N)+ T(N) = O(f(N))
b. Ti(N) — To(N) = o(f(N))
Ti(N)
TNy - oW
d. Ti(N) = O(Tz(N))

2.3 Which function grows faster: N log N or N1+¢/VlesN ¢ > (;

2.4 Prove that for any constant, k, log" N = o(N).

2.5 Find two functions f(N) and g(N) such that neither f(N) = O(g(N)) nor
&(N) = O(f (N)).

2.6 For each of the following six program fragments:

a. Give an analysis of the running time (Big-Oh will do).

b. Implement the code in the language of your choice, and give the running
time for several values of N.

C.
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c. Compare your analysis with the actual running times.

(1) Sum = 0;
for( i =0; i < N; i++ ) .
_ Sum++;
(2) Sum = 0;

for( i =0; i < N; i++ )
for( j =0; j < N; j++ )
Sum++;

(3) Sum = 0;
for( 4 =0; 1 < N; i++ )
for( j =0; j <N*N; j++ )
Sum++;

(4) Sum = 0;
for( i =0; 1 < N; i+ )
for( j =05 j <1i; j++ )
Sum++;
(5) Sum = 0;
for( i =0; i < N; i++ )
for( j =0; j <1 *1i; j+ )
for( k = 0; k < j; k++ )
Sum++;

(6) Sum = 0;
for( i =1; i < N} i++ )
for( j=1; j < *1d; j++ )
AfFCj%i==0)
for( k = 0; k < j; k++ )
Sum++;

2.7 Suppose you need to generate a random permutation of the first N integers. For
example, {4, 3, 1, 5, 2} and {3, 1, 4, 2, 5} are legal permutations, but {5, 4, 1, 2,
1} is not, because one number (1) is duplicated and another (3) is missing. This
routine is often used in simulation of algorithms. We assume the existence of
a random number generator, RandInt(i, ), which generates integers between i
and j with equal probability. Here are three algorithms:

1. Fill the array A from A[0] to A[N — 1] as follows: To fill A[i], generate
random numbers until you get one that is not already in A[0], A[1],...,
Ali —1].

2. Same as algorithm (1), but keep an extra array called the Used array. When
a random number, Ran, is first put in the array A, set Used[Ran] = 1. This
means that when filling A[#] with a random number, you can test in one step
to see whether the random number has been used, instead of the (possibly) i
steps in the first algorithm.
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3. Fill the array such that A[i] = i + 1. Then

for( i =1; i < N; i++ )
Swap( &A[ i 1, &A[ RandInt( 0, i) ] );

a. Prove that all three algorithms generate only legal permutations and that
all permutations are equally likely.

b. Give as accurate (Big-Oh) an analysis as you can of the expected running
time of each algorithm.

c. Write (separate) programs to execute each algorithm 10 times, to get a
good average. Run program (1) for N = 250, 500, 1,000, 2,000; program
(2) for N = 2,500, 5,000, 10,000, 20,000, 40,000, 80,000; and program
(3) for N = 10,000, 20,000, 40,000, 80,000, 160,000, 320,000, 640,000.

d. Compare your analysis with the actual running times.
e. What is the worst-case running time of each algorithm?

Complete the table in Figure 2.2 with estimates for the running times that
were too long to simulate. Interpolate the running times for these algorithms
and estimate the time required to compute the maximum subsequence sum of
1 million numbers. What assumptions have you made?

How much time is required to compute F(X) = .N=o A; X
a. Using a simple routine to perform exponentiation?
b. Using the routine in Section 2.4.4?
Consider the following algorithm (known as Horner’s rule) to evaluate
F(X) = XN AX':

Poly = 0;

for( i = N; i >=0; i--)

Poly = X * Poly + A[il;
a. Show how the steps are performed by this algorithm for X = 3, F(X) =
4X* +8X3 + X +2.

b. Explain why this algorithm works.
c. What is the running time of this algorithm?

Give an efficient algorithm to determine if ther: exists an integer 7 such that
A; = iinanarray of integers A; < A; < A; < --* < Ay.What is the running
time of your algorithm?
Give efficient algorithms (along with running time analyses) to:
a. Find the minimum subsequence sum.

*b. Find the minimum positive subsequence sum.

*c. Find the maximum subsequence product.

a. Write a program to determine if a positive integer, N, is prime.

b. In terms of N, what is the worst-case running time of your program? (You

should be able to do this in O(\/ﬁ).)
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2.14

2.15
2.16
217

2.18

2.19

c. Let B equal the number of bits in the binary representation of N. What is
the value of B?

d. In terms of B, what is the worst-case running time of your program?

e. Compare the running times to determine if a 20-bit number and a 40-bit
number are prime.

f. Is it more reasonable to give the running time in terms of N or B? Why?

The Sieve of Erastothenes is a method used to compute all primes less than N.

We begin by making a table of integers 2 to N. We find the smallest integer,

i, that is not crossed out, print #, and cross out i, 24, 3i,.... When i > ‘/ﬁ ,

the algorithm terminates. What is the running time of this algorithm?

Show that X %2 can be computed with only eight multiplications.

Write the fast exponentiation routine without recursion.

Give a precise count on the number of multiplications used by the fast
exponentiation routine. (Hint: Consider the binary representation of N.)

Programs A and B are analyzed and found to have worst-case running times
no greater than 150N log, N and N2, respectively. Answer the following
questions, if possible:

a. Which program has the better guarantee on the running time, for large
values of N (N > 10,000)?

b. Which program has the better guarantee on the running time, for small
values of N (N < 100)?

c. Which program will run faster on average for N = 1,000?

d. Isit possible that program B will run faster than program A on all possible
inputs?

A majority element in an array, A, of size N is an element that appears more
than N/2 times (thus, there is at most one). For example, the array

3,3,4,2,4,4,2,4,4
has a majority element (4), whereas the array
3,3,4,2,4,4,2,4

does not. If there is no majority element, your program should indicate this.
Here is a sketch of an algorithm to solve the problem:

First, a candidate majority element is found (this is the harder part). This
candidate is the only element that could possibly be the majority element. The
second step determines if this candidate is actually the majority. This is just a
sequential search through the array. To find a candidate in the array, A, form a
second array, B. Then compare A; and A,. If they are equal, add one of these to
B; otherwise do nothing. Then compare A3 and A4. Again if they are equal, add
one of these to B; otherwise do nothing. Continue in this fashion until the entire
array is read. Then recursively find a candidate for B; this is the candidate for A
(why?).

—_e
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a. How does the recursion terminate?
*b. How is the case where N is odd handled?
*c. What is the running time of the algorithm?
d. How can we avoid using an extra array B?
*e. Write a program to compute the majority element.

Why is it important to assume that integers in our computer model have a
fixed size?

Consider the word puzzle problem described in Chapter 1. Suppose we fix
the size of the longest word to be 10 characters.

a. In terms of R and C, which are the number of rows and columns in the
puzzle, and W, which is the number of words, what are the running times
of the algorithms described in Chapter 1?

b. Suppose the word list is presorted. Show how to use binary search to
obtain an algorithm with significantly better running time.

Suppose that line § in the binary search routine had the statement Low = Mid

instead of Low = Mid + 1. Would the routine still work?

Implement the binary search so that only one two-way comparison is per-

formed in each iteration.

Suppose that lines 6 and 7 in algorithm 3 (Fig. 2.7) are replaced by

/* 6%/  MaxLeftSum = MaxSubSum( A, Left, Center - 1 );
/* 7*/ MaxRightSum = MaxSubSum( A, Center, Right );

Would the routine still work?

The inner loop of the cubic maximum subsequence sum algorithm performs
N(N + 1)(N + 2)/6 iterations of the innermost code. The quadratic version
performs N(N + 1)/2 iterations. The linear version performs N iterations.
What pattern is evident? Can you give a combinatoric explanation of this
phenomenon?

References
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CHAPTER 3

Y < _

Lists, Stacks, and Queues

This chapter discusses three of the most simple and basic data structures. Virtually
every significant program will use at least one of these structures explicitly, and a
stack is always implicitly used in a program, whether or not you declare one. Among
the highlights of this chapter, we will

e Introduce the concept of Abstract Data Types (ADTs).

¢ Show how to efficiently perform operations on lists.

o Introduce the stack ADT and its use in implementing recursion.

o Introduce the queue ADT and its use in operating systems and algorithm design.

Because these data structures are so important, one might expect that they are
hard to implement. In fact, they are extremely easy to code up; the main difficulty is
maintaining enough discipline to write good general-purpose code for routines that
are generally only a few lines long.

3.1. Abstract Data Types (ADTS)

One of the basic rules concerning programming is that no routine should ever exceed
a page. This is accomplished by breaking the program down into modules. Each
module is a logical unit and does a specific job. Its size is kept small by calling
other modules. Modularity has several advantages. First, it is much easier to debug
small routines than large routines. Second, it is easier for several people to work on
a modular program simultaneously. Third, a well-written modular program places
certain dependencies in only one routine, making changes easier. For instance, if.
output needs to be written in a certain format, it is certainly important to have one
routine to do this. If printing statements are scattered throughout the program, it
will take considerably longer to make modifications. The idea that global variables
and side effects are bad is directly attributable to the idea that modularity is good.
An abstract data type (ApT) is a set of operations. Abstract data types are
mathematical abstractions; nowhere in an ADpT’s definition is there any mention of
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how the set of operations is implemented. This can be viewed as an extension of
modular design. 7

Objects such as lists, sets, and graphs, along with their operations, can be viewed
as abstract data types, just as integers, reals, and booleans are data types. Integers,
reals, and booleans have operations associated with them, and so do abstract data
types. For the set ADT, we might have such operations as union, intersection, size,
and complement. Alternatively, we might only want the two operations union and
find, which would define a different ADT on the set.

The basic idea is that the implementation of these operations is written once
in the program, and any other part of the program that needs to perform an
operation on the ADT can do so by calling the appropriate function. If for some
reason implementation details need to be changed, it should be easy to do so by
merely changing the routines that perform the ADT operations. This change, in a
perfect world, would be completely transparent to the rest of the program.

There is no rule telling us which operations must be supported for each ApT;
this is a design decision. Error handling and tie breaking (where appropriate) are
also generally up to the program designer. The three data structures that we will
study in this chapter are primary examples of ApTs. We will see how each can be
implemented in several ways, but if they are done correctly, the programs that use
them will not need to know which implementation was used.

3.2. The List ApT

We will deal with a general list of the form A;, A, Aj, ..., AN. We say that the size
of this list is N. We will call the special list of size 0 an empty list.

For any list except the empty list, we say that A, follows (or succeeds) A;
({ < N) and that A;_{ precedes A; (i > 1). The first element of the list is A;, and
the last element is Ay . We will not define the predecessor of A; or the successor of
An. The position of element A; in a list is i. Throughout this discussion, we will
assume, to simplify matters, that the elements in the list are integers, but in general,
arbitrarily complex elements are allowed.

Associated with these “definitions” is a set of operations that we would like
to perform on the list ADT. Some popular operations are PrintList and MakeEmpty,
which do the obvious things; Find, which returns the position of the first occurrence
of a key; Insert and Delete, which generally insert and delete some key from
some position in the list; and FindKth, which returns the element in some position
(specified as an argument). If the list is 34, 12, 52, 16, 12, then Find(52) might return
3; Insert(X, 3) might make the list into 34, 12, 52, X, 16, 12 (if we insert after the
position given); and Delete(52) might turn that list into 34, 12, X, 16, 12.

Of course, the interpretation of what is appropriate for a function is entirely
up to the programmer, as is the handling of special cases (for example, what does
Find(1) return above?). We could also add operations such as Next and Previous,
which would take a position as argument and return the position of the successor
and predecessor, respectively.
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3.2.1. Simple Array Implementation of Lists

All of these instructions can be implemented just by using an array. Even if the array
is dynamically allocated, an estimate of the maximum size of the list is required.
Usually this requires a high overestimate, which wastes considerable space. This
could be a serious limitation, especially if there are many lists of unknown size.

An array implementation allows PrintList and Find to be carried out in linear
time, which is as good as can be expected, and the FindKth operation takes constant
time. However, insertion and deletion are expensive. For example, inserting at
position 0 (which amounts to making a new first element) requires first pushing the
entire array down one spot to make room, whereas deleting the first element requires
shifting all the elements in the list up one, so the worst case of these operations is
O(N). On average, half of the list needs to be moved for either operation, so linear
time is still required. Merely building a list by N successive inserts would require
quadratic time.

Because the running time for insertions and deletions is so slow and the list size
must be known in advance, simple arrays are generally not used to implement lists.

3.2.2. [Linked Lists

In order to avoid the linear cost of insertion and deletion, we need to ensure that the
list is not stored contiguously, since otherwise entire parts of the list will need to be
moved. Figure 3.1 shows the general idea of a linked list.

The linked list consists of a series of structures, which are not necessarily
adjacent in memory. Each structure contains the element and a pointer to a structure
containing its successor. We call this the Next pointer. The last cell’s Next pointer
points to NULL; this value is defined by C and cannot be confused with another
pointer. ANSI C specifies that NULL is zero.

Recall that a pointer variable is just a variable that contains the address where
some other data are stored. Thus, if P is declared to be a pointer to a structure, then
the value stored in P is interpreted as the location, in main memory, where a structure
can be found. A field of that structure can be accessed by P->FieldName, where
FieldName is the name of the field we wish to examine. Figure 3.2 shows the actual
representation of the list in Figure 3.1. The list contains five structures, which happen

Figure 3.1 A linked list

Al Az - A3 A4 A5 _’—J_
Figure 3.2 Linked list with actual pointer values
A, (800 A, |112 A 992 A, 692 As |0

1000 800 712 992 692
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A, A, |4d-5 A 1 Aq as | +—
Figure 3.3 Deletion from a linked list
A A, \'"'“V """ Aj Ay As |1

Figure 3.4 Insertion into a linked list

to reside in memory locations 1000, 800, 712, 992, and 692, respectively. The Next
pointer in the first structure has the value 800, which provides the indication of
where the second structure is. The other structures each have a pointer that serves
a similar purpose. Of course, in order to access this list, we need to know where
the first cell can be found. A pointer variable can be used for this purpose. It is
important to remember that a pointer is just a number. For the rest of this chapter,
we will draw pointers with arrows, because they are more illustrative.

To execute PrintList(L) or Find(L,Key), we merely pass a pointer to the first
element in the list and then traverse the list by following the Next pointers. This
operation is clearly linear-time, although the constant is likely to be larger than if
an array implementation were used. The FindKth operation is no longer quite as
efficient as an array implementation; FindKth(L,i) takes O(i) time and works by
traversing down the list in the obvious manner. In practice, this bound is pessimistic,
because frequently the calls to FindKth are in sorted order (by i). As an example,
FindKth(L,2), FindKtb(L,3), FindKth(L,4), and FindKth(L,6) can all be executed in
one scan down the list.

The Delete command can be executed in one pointer change. Figure 3.3 shows
the result of deleting the third element in the original list.

The Insert command requires obtaining a new cell from the system by using
a malloc call (more on this later) and then executing two pointer maneuvers. The
general idea is shown in Figure 3.4. The dashed line represents the old pointer.

3.2.3. Programming Details

The description above is actually enough to get everything working, but there are
several places where you are likely to go wrong, First of all, there is no really obvious
way to insert at the front of the list from the definitions given. Second, deleting from
the front of the list is a special case, because it changes the start of the list; careless
coding will lose the list. A third problem concerns deletion in general. Although the
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Figure 3.5 Linked list with a header

pointer moves above are simple, the deletion algorithm requires us to keep track of
the cell before the one that we want to delete.

It turns out that one simple change solves all three problems. We will keep a
sentinel node, which is sometimes referred to as a header or dummy node. This is
a common practice, which we will see several times in the future. Our convention
will be that the header is in position 0. Figure 3.5 shows a linked list with a header
representing the list A1, Az, ..., As.

To avoid the problems associated with deletions, we need to write a routine
FindPrevious, which will return the position of the predecessor of the cell we wish
to delete. If we use a header, then if we wish to delete the first element in the
list, FindPrevious will return the position of the header. The use of a header node
is somewhat controversial. Some people argue that avoiding special cases is not
sufficient justification for adding fictitious cells; they view the use of header nodes as
little more than old-style hacking. Even so, we will use them here, precisely because
they allow us to show the basic pointer manipulations without obscuring the code
with special cases. Otherwise, whether or not a header should be used is a matter of
personal preference.

As examples, we will write about half of the list ADT routines. First, we need
our declarations, which are given in Figure 3.6. Following C conventions, the types
List and Position, as well as the function prototypes, are listed in what is to be a .»
file. The actual Node declaration is in a .c file.

The first function that we will write tests for an empty list. When we write code
for any data structure that involves pointers, it is always best to draw a picture first.
Figure 3.7 shows an empty list; from the figure it is easy to write the function in
Figure 3.8.

The next function, which is shown in Figure 3.9, tests whether the current
element, which by assumption exists, is the last of the list.

The next routine we will write is Find. Find, shown in Figure 3.10, returns the
position in the list of some element. Line 2 takes advantage of the fact that the and
(8&8¢) operation is short-circuited: if the first half of the and is false, the result is
automatically false and the second half is not executed.

Some programmers find it tempting to code the Find routine recurswely, possibly
because it avoids the sloppy termination condition. We shall see later that this is a
very bad idea and should be avoided at all costs.

Our fourth routine will delete some element X in list L. We need to decide
what to do if X occurs more than once or not at all. Our routine deletes the first
occurrence of X and does nothing if X is not in the list. To do this, we find P,
which is the cell prior to the one containing X, via a call to FindPrevious. The code to
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#ifndef _List_H

struct Node;

typedef struct Node *PtrToNode;
typedef PtrToNode List;

typedef PtrToNode Position;

List MakeEmpty( List L );

int IsEmpty( List L );

int IsLast( Position P, List L );

Position Find( ElementType X, List L );

void Delete( ElementType X, List L );

Position FindPrevious( ElementType X, List L );
void Insert( ElementType X, List L, Position P );
void DeletelList( List L );

Position Header( List L );

Position First( List L );

Position Advance( Position P );

ElementType Retrieve( Position P );

#endif /* _List_H */

/* Place in the implementation file */
struct Node
{
ElementType Element;
Position Next;
b

i’igure 3.6 Type declarations for linked lists

header +—

/

L

Figure 3.7 Empty list with header
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/* Return true if L is empty */

.i

nt

IsEmpty( List L )

{
}

return L->Next == NULL;

Figure 3.8 Function to test whether a linked list is

empty

/* Return true if P is the last position in Tist L */
/* Parameter L is unused in this implementation */

-i

nt

IsLast( Position P, List L )

{
}

return P->Next == NULL;

Figure 3.9 Function to test whether current posmon is

the last in a linked list

/*
/'ft
/*

/*

1*/
2%/
3%/

4%/

/* Return Position of X in L; NULL if not found */

Position
Find( ElementType X, List L )
{
Position P;
P = L->Next;
while( P != NULL && P->Element != X )
P = P->Next;
return P;
}

Figure 3.10 Find routine

implement this is shown in Figure 3.11. The FindPrevious routine is similar to Find
and is shown in Figure 3.12.

The last routine we will write is an insertion routine. We will pass an element to
be inserted along with the list L and a position P. Our particular insertion routine
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/* Delete first occurrence of X from a list */
/* Assume use of a header node *

void

Delete( ElementType X, List L )

{

}

Position P, TmpCell;
P = FindPrevious( X, L );

if( tIstast( P, L ) ) /* Assumption of header use */

{ /* X is found; delete it */
TmpCell P->Next;
P->Next = TmpCell->Next; /* Bypass deleted cell */
free( TmpCell );

o

Figure 3.11 Deletion routine for linked lists

/* 1%/
/* 2%/
/* 3%/

/% 4%/

/* If X is not found, then Next field of returned */
/* Position is NULL */
/* Assumes a header */

Position
FindPrevious( ElementType X, List L )

{

}

Position P;

P=L;

while( P->Next != NULL && P->Next->Element != X )
P = P->Next;

return P;

Figure 3.12 FindPrevious—the Find routine for use

with Delete

will insert an element after the position implied by P. This decision is arbitrary and is
meant to show that there are no set rules for what insertion does. It is quite possible
to insert the new element into position P (which means before the element currently
in position P), but doing this requires knowledge of the element before position P.
This could be obtained by a call to FindPrevious. It is thus important to comment
what you are doing. This has been done in Figure 3.13.
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/* Insert (after legal position P) */
/* Header implementation assumed */
/* Parameter L is unused in this 1mp1ementat1on */

void
Insert( ElementType X, List L, Position P )
{
Position TmpCell;
/* 1*/ TmpCell = malloc( sizeof( struct Node ) );
/¥ 2%/ if( TmpCell == NULL )
/* 3%/ FatalError( "Out of space!!!"™ );
/¥ 4%/ TmpCel1->Element = X;
/* 5%/ TmpCel1->Next = P->Next;
/* 6%/ P->Next = TmpCell;
}

Figure 3.13 Insertion routine for linked lists

Notice that we have passed the list to the Insert and IsLast routines, even
though it was never used. We did this because another implementation might need
this information, and so not passing the list would defeat the idea of using ADTs.*

With the exception of the Find and FindPrevious routines (and Delete, Wthh
calls FindPrevious), all of the operations we: have coded take O(1) time.'T his ‘is
because in all cases only a fixed number of instructions are pcrformed NO matter
how largc the list is, For the Find and FmdPrewaus routines, the running time is
O(N) in the worst case, because the entire list rmght need to be traversed if the
element either is not found or is last in the list. On- average, the running time is
O(N), because on average, half the list must be traversed.”

Additional routines, listed in Figure 3.6, are fairly stralghtforWard. We could
also write a routine to implement Previous. We leave these as exercises.

3.2.4. Common Errors

The most common error you will encounter is that your program will crash with
a nasty error message from the system, such as “memory access violation” or
“segmentation violation.” This message usually means that a pointer variable
contains a bogus address. One common reason is failure to initialize the variable.
For instance, if line 1 in Figure 3.14 is omitted, then P is undefined and is not likely
te be pointing at a valid part of memory. Another typical error concerns line 6
in Figure 3.13. If P is NULL, then the indirection is illegal. This function knows
that P is not NULL, so the routine is OK. Of course, you should comment this so that

*This is legal, but some compilers will issue a warning.
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/* Incorrect DeletelList algorithm */

void
DeleteList( List L )
{
Position P;
/* 1*/ P = L->Next; /* Header assumed */
/¥ 2%/ L->Next = NULL;
/* 3%/ while( P != NULL )
{
/¥ 4%/ free( P );
/* 5%/ P = P->Next;
}
}

Figure 3.14 Incorrect way to delete a list

the routine that calls Insert will ensure this. Whenever you do an indirection, you
must make sure that the pointer is not NULL. Some C compilers will implicitly do
this check for you, but this is not part of the C standard. When you port a program
from one compiler to another, you may find that it no longer works. This is one of
the common reasons why.

The second common mistake concerns when and when not to use malloc to get
a new cell. You must remember that declaring a pointer to a structure does not create
the structure but only gives enough space to hold the address where some structure
might be. The only way to create a record that is not already declared is to use the
malloc library routine. malloc(H owM anyBytes) has the system create, magically, a
new structure and return a pointer to it. If, on the other hand, if you want to use
a pointer variable to run down a list, there is no need to create a new structure; in
that case the malloc command is inappropriate. A type cast is needed on very old
compilers to make both sides of the assignment operator compatible. The C library
provides other variations of malloc such as calloc. Both of these routines require the
inclusion of stdlib.h.

When things are no longer needed, you can issue a free command to inform
the system that it may reclaim the space. A consequence of the free(P) command is
that the address that P is pointing to is unchanged, but the data that reside at that
address are now undefined.

If you never delete from a linked list, the number of calls to malloc should equal
the size of the list, plus 1 if a header is used. Any fewer, and you cannot possibly
have a working program. Any more, and you are wasting space and probably time.
Occasionally, if your program uses a lot of space, the system may be unable to
satisfy your request for a new cell. In this case a NULL pointer is returned.

After a deletion in a linked list, it is usually a good idea to free the cell, especially
if there are lots of insertions and deletions intermingled and memory might become
a problem. You need to keep a temporary variable set to the cell to be disposed of,
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/* Correct DeleteList algorithm */

void
DeleteList( List L )
{
Position P, Tmp;
/* 1%/ P = L->Next; /* Header assumed */
/* 2%/ L->Next = NULL;
/% 3%/ while( P != NULL )
{
/* 4%/ " Tmp = P->Next;
/* 5%/ free( P );
/* 6*/ P = Tmp;
}
}

Figure 3.15 Correct way to delete a list

because after the pointer moves are finished, you will not have a reference to it. As
an example, the code in Figure 3.14 is not the correct way to delete an entire list
(although it may work on some systems).

Figure 3.15 shows the correct way to do this. Disposal is not necessarily a
fast thing, so you might want to check to see if the disposal routine is causing any
slow performance, -and comment it out if this is the case. This author has written a
program (see the exercises) that was made 25 times faster by commenting out the
disposal (of 10,000 nodes). It turned out that the cells were freed in a rather peculiar
order and apparently caused an otherwise linear program to spend O(N log N ) time
to dispose of N cells.

Onie last warning: malloc(sizeof(PtrToNode)) is legal, but it doesn’t allocate
- enough space for a structure. It allocates space only for a pointer.

3.2.5.. Dtmbly Linked Lists

Sometimes it is convenient to traverse llsts backwards. The standard implementation
does not help here, but the solution is simple. Merely add an extra field to the data
structure, containing a pointer to the previous cell. The cost of this is an extra link,
which adds to the space requirement and also doubles the cost of insertions and
deletions because there are more pointers to fix. On the other hand, it simplifies
deletion, because you no longer have to refer to a key by using a pointer to the
previous cell; this information is now at hand. Figure 3.16 shows a doubly linked list.

Figure 3.16 A doubly linked list

A Ay A3 Ay As | =
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Al AZ A3 A4 A5

Figure 3.17 A double circularly linked list

3.2.6. Circularly Linked Lists

A popular convention is to have the last cell keep a pointer back to the first. This can
be done with or without a header (if the header is present, the last cell points to it)
and can also be done with doubly linked lists (the first cell’s previous pointer points
to the last cell). This clearly affects some of the tests, but the structure is popular in
some applications. Figure 3.17 shows a double circularly linked list with no header.

3.2.7. Examples

We provide two examples that use linked lists. The first is a simple way to represent
single-variable polynomials. The second is a complicated example of how linked lists
might be used to keep track of course registration at a university, and finally a general
representation of sparse matrices is introduced.

The Polynomial apr

We can define an abstract data type for single-variable polynomials (with nonnega-
tive exponents) by using a list. Let F(X) = Z?LO A; X, If most of the coefficients A;
are nonzero, we can use a simple array to store the coefficients. We could then write
routines to perform addition, subtraction, multiplication, differentiation, and other
operations on these polynomials. In this case, we might use the type declarations
given in Figure 3.18. We could then write routines to perform various operations.
Two possibilities are addition and multiplication; these are shown in Figures 3.19 to -
3.21. Ignoring the time to initialize the output polynomials to zero, the running time
of the multiplication routine is proportional to the product of the degree of the two
input polynomials. This is adequate for dense polynomials, where-most of the terms
are present, but if Py(X) = 10X 1000 4 §X14 4 1 and P,(X) = 3X 1990 — 2X1492 4
11X + 5, then the running time is likely to be unacceptable. One can see that

Figure 3.18 Type declarations for array implementa-
tion of the polynomial apT

typedef struct

{
int CoeffArray[ MaxDegree + 1 ];
int HighPower;

} * Polynomial;
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void

ZeroPolynomial( Polynomial Poly )

{
int i;
for( i = 0; i <= MaxDegree; i++ )

‘Poly->CoeffArray[ i ] = 0;

Poly->HighPower = 0;

}

Figure 3.19 Procedure to initialize a polynomial to
zero

void
AddPolynomial( const Polynomial Polyl,
const Polynomial Poly2, Polynomial PolySum )

{

int 1;

ZeroPolynomial( PoTlySum );

PolySum->HighPower = Max( Polyl->HighPower,

Poly2->HighPower );
“for( 1 = PolySum->HighPower; i >= 0; i-- )
PolySum->CoeffArray[ i ] = Polyl->CoeffArrayl i ]
+ Poly2->CoeffArray( i 1:

}

Figure 3.20 Procedure to add two polynomials

void
MultPolynomial( const Polynomial Polyl,
const Polynomial Poly2, Polynomial PolyProd )

{ - - I}
int i, j;
ZeroPolynomial( PolyProd );
PolyProd->HighPower = Polyl->HighPower + Poly2->HighPower;
if( PolyProd->HighPower > MaxDegree )
Error( "Exceeded array size" );
else
for( i = 0; i <= Polyl->HighPower; i++ )
for( j = 0; j <= Poly2->HighPower; j++ )
PolyProd->CoeffArray[ i + j ] +=
Polyl->CoeffArrayl i ] *
Poly2->CoeffArray[ j 1;
}

Figure 3.21 Procedure to multiply two polynomials
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10| 1000 5114 ~1[ 0 +—

3 (1990 -2 (1492 = 11] 1 5|10 -

| X

.Figure 3.22 Linked list representations of two
polynomials

typedef struct Node *PtrToNode;

struct Node

{
int Coefficient;
int Exponent;
PtrToNode Next;
IH

typedef PtrToNode Polynomial; /* Nodes sorted by exponent */

Figure 3.23 Type declaration for linked list implementa-
tion of the Polynomial apT

most of the time is spent multiplying zeros and stepping through what amounts to
nonexistent parts of the input polynomials. This is always undesirable.

An alternative is to use a singly linked list. Each term in the,polynomial is
contained in one cell, and the cells are sorted in decreasing order of exponents. For
instance, the linked lists in Figure 3.22 represent P1(X) and P»(X). We could then
use the declarations in Figure 3.23.

The operations would then be straightforward to implement. The only potential
difficulty is that when two polynomials are multiplied, the resultant polynomial will
have to have like terms combined. There are several ways to do this, but we leave
this as an exercise. , '

Multilists

Our last example shows a more complicated use of linked lists. A university with
40,000 students and 2,500 courses needs to be able to generate two types of reports.
The first report lists the registration for each class, and the second report lists, by
student, the classes that each student is registered for.

The obvious implementation might be to use a two-dimensional array. Such an
array would have 100 million entries. The average student registers for about three
courses, so only 120,000 of these entries, or roughly 0.1 percent, would actually
have meaningful data. ’
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What is needed is a list for each class containing the students in the class. We
also need a list for each student containing the classes the student is registered for.
Figure 3.24 shows our implementation.

As the figure shows, we have combined two lists into one. All lists use a header
and are circular. To list all of the students in class C3, we start at C3 and traverse its
list (by going right). The first cell belongs to student S1. Although there is no explicit
information to this effect, this can be determined by following the student’s linked
list until the header is reached. Once this is done, we return to C3’s list (we stored
the position we were at in the course list before we traversed the student’s list) and
find another cell, which can be determined to belong to S3. We can continue and
find that S4 and SS are also in this class. In a similar manner, we can determine, for
any student, all of the classes in which the student is registered.

Using a circular list saves space but does so at the expense of time. In the worst
case, if the first student was registered for every course, then every entry would need
to be examined to determine all the course names for that student. Because in this
application there are relatively few courses per student and few students per course,
this is not likely to happen. If it were suspected that this could cause a problem,
then each of the (nonheader) cells could have pointers directly back to the student
and class header. This would double the space requirement but would simplify and
speed the implementation.

[ S O IO TR IO R
S1 S2 S3 S4 S5
C1 -
Cc2
— C3
L L___| — — S

Figure 3.24 Multilist implementation for
registration problem
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The above example is actually a special case for a sparse matrix representation.
In general, the standard representation of a matrix is a two-dimensional array.
Howevet, if there ate too many zero entries in a matrix, and we call this a sparse
matrix, the standard implementation wastes a tremendous amount of space and
sometimes might not work when the matrix is too large since most compilers
impose limits on array sizes.

One solution to efficiently represent a sparse matrix is to use a multilist, where
the columns and rows are represented by circularly linked lists with head nodes.
Each node has a Tag field to distinguish between head nodes and entry nodes.
Each head node has three additional pointers: RowPtr, ColumnPtr, and Next as
shown in Figure 3.25 (a). The RowPtr and the ColumnPtr fields are used to link
into a row list and a column list, respectively. The Next field links the head nodes
together.

Each entry node has five fields besides the Iag field: RowPtr, ColumnPtr, Row,
Column and Value, which store the row and column list pointers, the tow and
column indices and the value of that nonzero entry, respectively. Figure 3.25 (b)
shows such a structure.

ColumnPtr | RowPtr ColumnPtr| Row | Column| RowPtr
Tag : Tag
Next Value
(a) Head node (b) Entry node

Figure 3.25 Node structures for sparse matrices

An entry node will be linked into the circularly linked lists for Column and
Row, and hence is simultaneously linked into two different lists. Each head node
is in three lists: besides the column and row lists, it is in a list of head nodes as
well. The list of head nodes also has a head node that has the same structure as
an entry node. The Column and Row fields are used to stoze the matrix dimensions,
and the RowP¢r field is used to link into the list of head nodes.

Figure 3.26 shows asample 4x3 sparse matrix (2) and its implementation (b).
The Tug fields are omitted for the sake of clarity, and we can easily tell from the
node structures. Notice that we may reference the entire matrix through the head
node pointer A.

3.2.8. Cursor Implementation of Linked Lists

Many languages, such as Basic and FORTRAN, do not support pointers. If linked lists
are required and pointers are not available, then an alternative implementation must
be used. The method we will describe is known as a c#rsor implementation.

The two important features present in a pointer implementation of linked lists
are as follows:

1. The data are stored in a collection of structures. Each structure contains
data and a pointer to the next structure.
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0 0 11
22 0 0
0 33 0
4 0 55
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alslg—1 | 1] i
o || JI0BE
1
7'y
A
H1 » 1[1}0]
22
A
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(b) Multilist implementation for the matrix A

Figure 3.26 A sample 4x3 sparse matrix and its multilist implementation

2. A new structure can be obtained from the system’s global memory by a call
to malloc and released by a call to free.

Our cursor implementation must be able to simulate this. The logical way to satisfy
condition 1 is to have a global array of structures. For any cell in the array, its array
index can be used in place of an address. Figure 3.27 gives the declarations for a
cursor implementation of linked lists.

We must now simulate condition 2 by allowing the equivalent of malloc and
free for cells in the CursorSpace array. To do this, we will keep a list (the freelist)
of cells that are not in any list. The list will use cell 0 as a header. The initial
configuration is shown in Figure 3.28.

A value of 0 for Next is the equivalent of a NULL pointer. The initialization of
CursorSpace is a straightforward loop, which we leave as an exercise. To perform a
malloc, the first element (after the header) is removed from the freelist. To perform

51



52

CHAPTER 3/LISTS, STACKS, AND QUEUES

#ifndef _Cursor_H

typedef int PtrToNode;
typedef PtrToNode List;
typedef PtrToNode Position;

void InitializeCursorSpace( void );

List MakeEmpty( List L );

int IsEmpty( const List L );

int IsLast( const Position P, const List L );
Position Find( ElementType X, const List L );
void Delete( ElementType X, List L );

Position FindPrevious( ElementType X, const List L );
void Insert( ElementType X, List L, Position P );
void Deletelist( List L );

Position Header( const List L );

Position First( const List L );

Position Advance( const Position P );

ElementType Retrieve( const Position P );

#endif /* _Cursor_H */

/* Place in the implementation file */
struct Node
{

ElementType Element;

Position Next;

IS

struct Node CursorSpace[ SpaceSize ];

Figure 3.27 Declarations for cursor implementation
of linked lists

a free, we place the cell at the front of the freelist. Figure 3.29 shows the cursor
implementation of malloc and free. Notice that if there is no space available, our
routine does the correct thing by setting P = 0. This indicates that there are no more
cells left, and also makes the second line of CursorAlloc a nonoperation (no-op).

Given this, the cursor implementation of linked lists is straightforward. For
consistency, we will implement our lists with a2 header node. As an example, in
Figure 330, if the value of L is 5 and the value of M is 3, then L represents the list
a, b, e, and M represents the list ¢, d, f.

To write the functions for a cursor implementation of linked lists, we must pass
and return the identical parameters as the pointer implementation. The routines
are straightforward. Figure 3.31 implements a function to test whether a list
is empty. Figure 3.32 implements the test of whether the current position is the
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Slot Element Next
0 1
1 2
2 3
3 4
4 s
S 6
6 7
7 8
8 9
9 10

10 0

Figure 3.28 An initialized CursorSpace

static Position
CursorAlloc( void )

{
Position P;
P = CursorSpace[ 0 ].Next;
CursorSpace[ 0 ].Next = CursorSpace[ P ].Next;
return P;
}

static void
CursorFree( Position P )
{
CursorSpace[ P ].Next
"CursorSpace[ 0 ].Next

CursorSpace[ 0 ].Next;
Pi

}

Figure 3.29 Routines: CursorAlloc and CursorFree

last in a linked list. The function Find in Figure 3.33 returns the position of X in list
L. The code to implement deletion is shown in Figure 3.34. Again, the interface for
the cursor implementation is identical to the pointer implementation. Finally, Figure
3.35 shows a cursor implementation of Insert.

The rest of the routines are similarly coded. The crucial point is that these
routines follow the AbT specification. They take specific arguments and per-
form specific operations. The implementation is transparent to the user. The
cursor implementation could be used instead of the linked list implementation,
with virtually no change required in the rest of the code. If relatively few Finds are
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Slot Element Next
0 - 6
1 b 9
2 f 0
3 header 7
4 - 0
5 header 10
6 - 4
7 c 8
8 d 2
9 e 0

10 a 1

Figure 3.30 Example of a cursor implementation of linked lists

/* Return true if L is empty */
int

IsEmpty( List L )

{

}

return CursorSpace[ L ].Next == 0;

Figure 3.31 Function to test whether a linked list is
empty—cursor implementation

/* Return true if P is the last position in list L */
/* Parameter L is unused in this implementation */

int
IsLast( Position P, List L )
{

}

return CursorSpace[ P ].Next == 0;

Figure 3.32 Function to test whether P is lastin a -
linked list—cursor implementation
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/'k
/*
/*

/'k

1*/
2%/
3*/

ax/

/* Return Position of X in L; 0 if not found */
/* Uses a header node */

Position
Find( ElementType X, List L )

{

Position P;

P = CursorSpace[ L ].Next;
while( P && CursorSpace[ P ].Element != X )
P = CursorSpace[ P ].Next;

return P;

}

Figure 3.33 Find routine—cursor implementation

/* Delete first occurrence of X from a 1ist */
/* Assume use of a header node */

void
Delete( ElementType X, List L )

{
Position P, TmpCell;

P = FindPrevious( X, L );

if( 'IsLast( P, L) ) /* Assumption of header use */
{ /* X is found; delete it */
TmpCell = CursorSpace[ P ].Next;
CursorSpace[ P ].Next = CursorSpace[ TmpCell ].Next;
CursorFree( TmpCell );

}

Figure 3.34 Deletion routine fdr linked lists—cursor

implementation

performed, the cursor implementation could be significantly faster because of the
lack of memory management routines.

The freelist represents an interesting data structure in its own right. The cell
that is removed from the freelist is the one that was most recently placed there by
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/* Insert (after legal position P) */
/* Header implementation assumed */° -
/* Parameter L is unused in this implementation */

void ;
Insert( ElementType X, List L, Pos1t1on P)
{
Position TmpCell;
/* 1%/ TmpCell = CursorAlloc( );
/* 2%/ if( TmpCell == 0 )
/* 3%/ FatalError( "Out of space!!!" );
/* 4%/ CursorSpace[ TmpCell ].Element = X;
/* 5%/ CursorSpace[ TmpCell ].Next = CursorSpacel[-P ]. Next,
/* 6%/ CursorSpace[ P ].Next = TmpCell;
}
Figure 3.35 Insertion routine for linked lists—cursor
implementation

virtue of free. Thus, the last cell placed on the freelist is the first cell-taken off. The
data structure that also has this property is known as a stack, and is the topic of the
next section. ‘

3.3. The Stack ApT

3.3.1. Stack Model

A stack is a list with the restriction that insertions and deletions can be performed
in only one position, namely, the end of the list, called the top. The fundamental
operations on a stack are Push, which is equivalent to.an insert, and Pop, which
deletes the ‘most recently inserted element. The most recently inserted element can
be examined prior to performing a Pop by use of the Top routine. A Pop or Top on
an empty stack is generally considered an error in the stack AbT. On the other hand,
running out of space when performing a Push is an implementation error but not .ar
ADT error. )

Stacks are sometimes known as LiFo (last in, first out) lists. The model depicted
in Figure 3.36 signifies only that Pushes are input operations and Pops and Tops are
output. The usual operations to make empty stacks and test for emptiness are part
of the repertoire, but essentially all that you can'do to a stack is Pysh and Pop. ..

Figure 3.37 shows an abstract stack after several operations. The general model
is that there is some element that is at the top of the stack, and it is the only element
that is visible.
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Pop(S)
- Stack S
Top(S)

Push(X, S)

Figure 3.36 Stack model: input to a stack is by Push, output is by Pop

Top 2

{(4)}
{{1}}
{3h
{{6]}

Figure 3.37 Stack model: only the top element is accessible

3.3.2. Implementation of Stacks

Since a stack is a list, any list implementation will do. We will give two popular
implementations. One uses pointers and the other uses an array, but, as we saw in
the previous section, if we use good programming principles, the calling routines do
not need to know which method is being used.

Linked List Implementation of Stacks

The first implementation of a stack uses a singly linked list. We perform a Push by
inserting at the front of the list. We perform a Pop by deleting the element at the
front of the list. A Top operation merely examines the element at the front of the

" list, returning its value. Sometimes the Pop and Top operations are combined into
one. We could use calls to the linked list routines of the previous section, but we will
rewrite the stack routines from scratch for the sake of clarity.

First, we give the definitions in Figure 3.38. We implement the stack using a
header, Figure 3.39 shows that an empty stack is tested for in the same manner as
an empry list.

Creating an empty stack is also simple. We merely create a header node;
MakeEmpty sets the Next pointer to NULL (see Fig. 3.40). The Push is implemented
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#ifndef _Stack_h

struct Node;
typedef struct Node *PtrToNode;
typedef PtrToNode Stack;

int IsEmpty( Stack S );

Stack CreateStack( void );

void DisposeStack( Stack S );

void MakeEmpty( Stack S );

void Push( ElementType X, Stack S );
ElementType Top( Stack S );

void Pop( Stack S );

#endif /* _Stack_h */

/* Place in implementation file */
/* Stack implementation is a 1inked 1ist with a header */
struct Node
{
ElementType Element;
PtrToNode Next;

I

Figure 3.38 Type declaration for linked list implemen-
tation of the stack ADT

int
IsEmpty( Stack S )
{

}

return S->Next == NULL;

Figure 3.39 Routine to test whether a stack is empty—
linked list implementation

as an insertion into the front of a linked list, where the front of the list serves as the,
top of the stack (see Fig. 3.41). The Top is performed by examining the element in
the first position of the list (see Fig. 3.42). Finally, we implement Pop as a deletion
from the front of the list (see Fig. 3.43).

It should be clear that all the operations take constant time, because nowhere
in any of the routines is there even a reference to the size of the stack (except
for emptiness), much less a loop that depends on this size. The drawback of
this implementation is that the calls to malloc and free are expensive, especially in
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Stack
CreateStack( void )

{
Stack S;

S = malloc( sizeof( struct Node ) );
if( S == NULL )

FatalError( "Out of space!!!" );
MakeEmpty( S );
return S;
}
void

MakeEmpty( Stack S )
{

if( S == NULL )
Error( "Must use CreateStack first" );
else
while( !IsEmpty( S ) )
Pop( S );
}

Figure 3.40 Routine to create an empty stack—linked
list implementation

void
Push( ElementType X, Stack S )

{
PtrToNode TmpCell;

TmpCell = malloc( sizeof( struct Node ) );
if( TmpCell == NULL )

FatalError( "Out of space!!!" );
else :
{
TmpCell1->Element = X;
TmpCell->Next = S->Next;
S->Next = TmpCell;
}

}

Figure 3.41 Routine to push onto a stack—linked list
implementation
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ElementType
Top( Stack S )

if( 1'IsEmpty( S ) )
return S->Next->Element;
Error( "Empty stack” );
return 0; /* Return value used to avoid warning */

}

Figure 3.42 Routine to return top element in a
stack—linked list implementation

void
Pop( Stack S )
{

PtrToNode FirstCell;

if( IsEmpty( S ) )
Error( "Empty stack" );
else

{
FirstCell = S->Next;

S->Next = S->Next->Next;
free( FirstCell );

}

Figure 3.43 Routine to pop from a stack—linked list
implementation

comparison to the pointer manipulation routines. Some of this can be avoided by
using a second stack, which is initially empty. When a cell is to be dropped from the
first stack, it is merely placed on the second stack. Then, when new cells are needed
for the first stack, the second stack is checked first.

Array Implementation of Stacks

An alternative implementation avoids pointers and is probably the more popular
solution. The only potential hazard with this strategy is that we need to declare
an array size ahead of time. Generally this is not a problem, because in typical
applications, even if there are quite a few stack operations, the actual number of
elements in the stack at any time never gets too large. It is usually easy to declare
the array to be large enough without wasting too much space. If this is not possible,
then a safe course would be to use a linked list implementation.

If we use an array implementation, the implementation is trivial. Associated with
each stack is TopOfStack, which is —1 for an empty stack (this is how an empty stack
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is initialized). To push some element X onto the stack, we increment TopOfStack and
then set Stack[TopOfStack] = X, where Stack is the array representing the actual
stack. To pop, we set the return value to Stack[TopOfStack] and then decrement
TopOfStack. Of course, since there are potentially several stacks, the Stack array
and TopOfStack are part of one structure representing a stack. It is almost always
a bad idea to use global variables and fixed names to represent this (or any) data
structure, because in most real-life situations there will be more than one stack.
When writing your actual code, you should attempt to follow the model as closely
as possible, so that no part of your code, except for the stack routines, can attempt
to access the array or top-of-stack variable implied by each stack. This is true for all
ADT operations. Modern languages such as Ada and C++ can actually enforce this
rule,

Notice that these operations are performed in not only constant time, but very
fast constant time. On some machines, Pushes and Pops (of integers) can be written
in one machine instruction, operating on a register with auto-increment and auto-
decrement addressing. The fact that most modern machines have stack operations
as part of the instruction set enforces the idea that the stack is probably the most
fundamental data structure in computer science, after the array.

One problem that affects the efficiency of implementing stacks is error testing.
Our linked list implementation carefully checked for errors. As described above, a
Pop on an empty stack or a Push on a full stack will overflow the array bounds and
cause a crash. This is obviously undesirable, but if checks for these conditions were
put in the array implementation, they would likely take as much time as the actual
stack manipulation. For this reason, it has become a common practice to skimp on
error checking in the stack routines, except where error handling is crucial (as in
operating systems). Although you can probably get away with this in most cases by
declaring the stack to be large enough not to overflow and ensuring that routines
that use Pop never attempt to Pop an empty stack, this can lead to code that barely
works at best, especially when programs are large and are written by more than one
person or at more than one time. Because stack operations take such fast constant
time, it is rare that a significant part of the running time of a program is spent in
these routines. This means that it is generally not justifiable to omit error checks.
You should always write the error checks; if they are redundant, you can always
comment them out if they really cost too much time. Having said all this, we can
now write routines to implement a general stack using arrays.

A Stack is defined in Figure 3.44 as a pointer to a structure. The structure
contains the TopOfStack and Capacity fields. Once the maximum size is known,
the stack array can be dynamically allocated. Figure 3.45 creates a stack of a given
maximum size. Lines 3-5 allocate the stack structure, and lines 6-8 allocate the
stack array. Lines 9 and 10 initialize the TopOfStack and Capacity fields. The stack
array does not need to be initialized. The stack is returned at line 11.

The routine DisposeStack should be written to free the stack structure. This
routine first frees the stack array and then the stack structure (see Fig. 3.46).
Since CreateStack requires an argument in the array implementation, but not in
the linked list implementation, the routine that uses a stack will need to know
which implementation is being used unless a dummy parameter is added for the
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#'i.fndef _Stack_h

struct StackRecord;
typedef struct StackRecord *Stack;

int IsEmpty( Stack S );

int IsFul1( Stack S );

Stack CreateStack( int MaxElements );
void DisposeStack( Stack S );

void MakeEmpty( Stack S );

void Push( ElementType X, Stack S );
ElementType Top( Stack S );

void Pop( Stack S );

ElementType TopAndPop( Stack S );

#endif /* _Stack_h */

/* Place in implementatioin file */

/* Stack implementation is a dynamically allocated array */
#define EmptyTOS ( -1 )

#define MinStackSize ( 5 )

struct StackRecord

{
int Capacity;
int TopOfStack;
ElementType *Array;
b

Figure 3.44 Stack declarations—array implementation

later implementation. Unfortunately, efficiency and software idealism often create
conflicts. ' o

We have assumed that all stacks deal with the same type of element. In many
languages, if there are different types of stacks, then we need to rewrite a new
version of the stack routines for each different type, giving each version a different
name. A cleaner alternative is provided in C++, which allows one to write a set of
generic stack routines that work for any type. C++ also allows stacks of several
different types to retain the same procedure and function names (such as Push and
Pop): The compiler decides which routines are implied by checking the type of the
calling routine. .

Having said all this, we will now rewrite the four stack routines. In true ADT
spirit, we will make the function and procedure heading look identical to the linked
list implementation. The routines themselves are very simple and follow the written
description exactly (see Figs. 3.47 to 3.51).
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/*
/'A'

/*
/*
/*

/-k
/*
/'k
/*

1*/
2%/

3%/
4%/
5%/

6*/
7%/
8%/
9%/

/*10%/

/*11*/

Stack
CreateStack( int MaxElements )

}

Stack S;

if( MaxElements < MinStackSize )
Error( "Stack size is too small" );

S = malloc( sizeof( struct StackRecord ) );
if( S == NULL )
FatalError( "Out of space!!!" );

S->Array = malloc( sizeof( ElementType ) * MaxElements );
if( S->Array == NULL )
FatalError( "Out of space!!!" );
S->Capacity = MaxElements;
MakeEmpty( S );

return S;

Figure 3.45 Stack creation—array implementation

void

DisposeStack( Stack S )

}

if( S != NULL )

free( S->Array );
free( S );

Figure 3.46 Routine for freeing stack—array imple-

mentation

int

IsEmpty( Stack S )
{

}

return S->TopOfStack == EmptyTOS;

Figure 3.47 Routine to test whether a stack is empty—

array implementation
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void
MakeEmpty( Stack S )
{

S->TopOfStack = EmptyT0S;
}

Figure 3.48 Routine to create an empty stack—array
implementation

void
Push( ElementType X, Stack S )

if( IsFul1( S ) )
Error( "Full stack" );
else
S->Array[ ++S->TopOfStack ] = X;
}

Figure 3.49 Routine to push onto a stack—array im-
plementation

ElementType
Top( Stack S )

if( 'IsEmpty( S ) )
return S->Array[ S->TopOfStack ];
Error( "Empty stack" );
return 0; /* Return value used to avoid warning */

}
Figure 3.50 Routine to return top of stack—array im-
plementation
void
Pop( Stack S )
{
if( IsEmpty( S ) )
Error( "Empty stack” );
else
S->TopOfStack--;
}

Figure 3.51 Routine to pop from a stack—array imple-
mentation
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ElementType
TopAndPop( Stack S )
{

if( !'IsEmpty( S ) )
return S->Array[ S->TopOfStack-- 1;
Error( "Empty stack" );
return 0; /* Return value used to avoid warning */

}

Figure 3.52 Routine to give top element and pop a
stack—array implementation

Pop is occasionally written as a function that returns the popped element
(and alters the stack). Although current thinking suggests that functions should not
change their input variables, Figure 3.52 illustrates that this is the most convenient
method in C.

3.3.3. Applications

It should come as no surprise that if we restrict the operations allowed on a list,
those operations can be performed very quickly. The big surprise, however, is that
the small number of operations left are so powerful and important. We give three of
the many applications of stacks. The third application gives a deep insight into how
programs are organized.

Balancing Symbols

Compilers check your programs for syntax errors, but frequently a lack of one
symbol (such as a missing brace or comment starter) will cause the compiler to spill
out a hundred lines of diagnostics without identifying the real error.

A useful tool in this situation is a program that checks whether everything is
balanced. Thus, every right brace, bracker, and parenthesis must correspond to its
left counterpart. The sequence [()] is legal, but [(]) is wrong. Obviously, it is not
worthwhile writing a huge program for this, but it turns out that it is easy to check
these things. For simplicity, we will just check for balancing of parentheses, brackets,
and braces and ignore any other character that appears.

The simple algorithm uses a stack and is as follows:

Make an empty stack. Read characters until end of file. If the character is an opening
symbol, push it onto the stack. If it is a closing symbol, then if the stack is empty
report an error. Otherwise, pop the stack. If the symbol popped is not the corresponding
opening symbol, then report an error. At end of file, if the stack is not empty report an
error.

You should be able to convince yourself that this algorithm works. It is clearly
linear and actually makes only one pass through the input. It is thus on-line and
quite fast, Extra werk can be done to attempt to decide what to do when an error is
reported—such as identifying the likely cause.
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Postfix Expressions

Suppose we have a pocket calculator and would like to compute the cost of a
shopping trip. To do so, we add a list of numbers and multiply the result by 1.06;
this computes the purchase price of some items with local sales tax added. If the
items are 4.99, 5.99, and 6.99, then a natural way to enter this would be the
sequence

4.99 + 5.99 + 6.99 *1.06 =

Depending on the calculator, this produces either the intended answer, 19.05, or
the scientific answer, 18.39. Most simple four-function calculators will give the
first answer, but many advanced calculators know that multiplication has higher
precedence than addition.

On the other hand, some items are taxable and some are not, so if only the first
and last items were actually taxable, then the sequence

4.99 % 1.06 + 5.99 + 6.99 x1.06 =

would give ‘the correct answer (18.69) on a scientific calculator and the wrong
answer (19.37) on a simple calculator. A scientific calculator generally comes with
parentheses, so we can always get the right answer by parenthesizing, but with a
simple calculator we need to remember intermediate results.

A typical evaluation sequence for this example might be to multiply 4.99 and
1.06, saving this answer as A1. We then add 5.99 and A;, saving the result in A;. We
multiply 6.99 and 1.06, saving the answer in A;, and finish by adding A and A,
leaving the final answer in A;. We can write this sequence of operations as follows:

4.99 1.06 * 5.99 + 6.99 1.06 * +

This notation is known as postfix or reverse Polish notation and is evaluated exactly
as we have described above. The easiest way to do this is to use a stack. When a
number is seen, it is pushed onto the stack; when an operator is seen, the operator is
applied to the two numbers (symbols) that are popped from the stack, and the result
is pushed onto the stack. For instance, the postfix expression

6523+8*x+3+«* h

is evaluated as follows: The first four symbols are placed on the stack. The resulting
stack is

TopOfStack —

NN W

Next a ‘+’ is read, so 3 and 2 are popped from the stack and their sum, 3, is pushed.
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TopOfStack — 5

5
6
Next 8 is pushed.
TopOfStack — 8
5
N
6

Now a ‘¥’ is seen, so 8 and 5 are popped and § * 8 = 40 is pushed.

TopOfStack — 40

Next a ‘+’ is seen, so 40 and 5 are popped and 5 + 40 = 45 is pushed.

TopOfStack — 45

Now, 3 is pushed.

TopOfStack — 3
45
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Next ‘+* pops 3 and 45 and pushes 45 + 3 = 48.

TopOfStack — 48

Finally, a “¥ is seen and 48 and 6 are popped; the result, 6 * 48 = 288, is pushed.

TopofStack — 288

The time to evaluate a postfix expression is O(N), because processing each
element in the input consists of stack operations and thus takes constant time.
The algorithm to do so is very simple. Notice that when an expression is given in
postfix notation, there is no need to know any precedence rules; this is an obvious
advantage.

Infix to Postfix Conversion

Not only can a stack be used to evaluate a postfix expression, but we can also use
a stack to convert an expression in standard form (otherwise known as infix) into
postfix. We will concentrate on a small version of the general problem by allowing
only the operators +, *, (, ), and insisting on the usual precedence rules. We will
further assume that the expression is legal. Suppose we want to convert the infix
expression

at+tbrc+(d*xe+f)xg

into postfix. A correct answerisabc* +de*f + gx* +.,

When an operand is read, it is immediately placed onto the output, Operators
are not immediately output, so they must be saved somewhere. The correct thing to
do is to place operators that have been seen, but not placed on the output, onto the
stack. We will also stack left parentheses when they are encountered. We start with
an initially empty stack.

If we see a right parenthesis, then we pop the stack, writing symbols until we
encounter a (corresponding) left parenthesis, which is popped but not output.

If we see any other symbol (‘+7, “*’, ‘(’), then we pop entries from the stack
until we find an entry of lower priority. One exception is that we never remove a



3.3. THE STACK aor 69

“’ from the stack except when processing a ‘)’. For the purposes of this operation,
‘+’ has lowest priority and ‘(’ highest. When the popping is done, we push the
operator onto the stack.

Finally, if we read the end of input, we pop the stack until it is empty, writing
symbols onto the output.

To see how this algorithm performs, we will convert the infix expression above
into its postfix form. First, the symbol g is read, so it is passed through to the output.
Then ‘+’ is read and pushed onto the stack. Next b is read and passed through to
the output. The state of affairs at this juncture is as follows:

IJ o ]

Stack Output

Next a ‘*’ is read. The top entry on the operator stack has lower precedence than
“’, so nothing is output and ‘*’ is put on the stack. Next, ¢ is read and output. Thus
far, we have

*

+ | abc j

Stack Output

The next symbol is a ‘+’. Checking the stack, we find that we will pop a “*’ and
Place it on the output; pop the other ‘+’, which is not of Jower but equal priority,
on the stack; and then push the ‘+°.

A [Cevers ]

Stack Output

The next symbol read is a ‘(’, which, being of highest precedence, is placed on the
stack. Then d is read and output.

+ | abc*+d —l
Stack Output
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We continue by reading a “¥’. Since open parentheses do not get removed except
when a closed parenthesis is being processed, there is no output. Next, e is read and
output.

*

(
+ [ abc*+de |
Stack Output

The next symbol read is a ‘+’. We pop and output ‘¥’ and then push ‘+’°. Then we
read and output f.

+

(

+ lia bc*+de*f
Stack Output

Now we read a ‘)’, so the stack is emptied back to the ‘(’. We output a ‘+’.

‘ + l | abc*+de*f+ ]

Stack Output

We read a ‘*’ next; it is pushed onto the stack. Then g is read and output.

*

+ | abc*+de*f+g |
Stack : ‘Output

The input is now empty, so we pop and output symbols from the stack until it is

empty.
‘ | Labc*+de*f+g*+]

Stack Output
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As before, this conversion requires only O(N) time and works in one pass
through the input. We can add subtraction and division to this repertoire by
assigning subtraction and addition equal priority and multiplication and division
equal priority. A subtle point is that the expression 4 — b — ¢ will be converted
to ab — ¢c— and not abc — —. Our algorithm does the right thing, because these
operators associate from left to right. This is not necessarily the case in general, since
exponentiation associates right to left: 22’ = 28 = 256, not 4> = 64. We leave as
an exercise the problem of adding exponentiation to the repertoire of assignments.

Function Calls

The algorithm to check balanced symbols suggests a way to implement function
calls. The problem here is that when a call is made to a new function, all the
variables local to the calling routine need to be saved by the system, since otherwise
the new function will overwrite the calling routine’s variables. Furthermore, the
current location in the routine must be saved so that the new function knows where
to go after it is done. The variables have generally been assigned by the compiler
to machine registers, and there are certain to be conflicts (usually all procedures get
some variables assigned to register #1), especially if recursion is involved. The reason
that this problem is similar to balancing symbols is that a function call and function
return are essentially the same as an open parenthesis and closed parenthesis, so the
same ideas should work.

When there is a function call, all the important information that needs to be
saved, such as register values (corresponding to variable names) and the return
address (which can be obtained from the program counter, which is typically in a
register), is saved “on a piece of paper” in an abstract way and put at the top of
a pile. Then the control is transferred to the new function, which is free to replace
the registers with its values. If it makes other function calls, it follows the same
procedure. When the function wants to return, it looks at the “paper” at the top of
the pile and restores all the registers. It then makes the return jump.

Clearly, all of this work can be done using a stack, and that is exactly what
happens in virtually every programming language that implements recursion. The
information saved is called either an activation record or stack frame. Typically,
a slight adjustment is made: The current environment is represented at the top of
the stack. Thus, a return gives the previous environment (without copying). The
stack in a real computer frequently grows from the high end of your memory
partition downward, and on many systems there is no checking for overflow. There
is always the possibility that you will run out of stack space by having too many
simultaneously active functions. Needless to say, running out of stack space is always
a fatal error.

In languages and systems that do not check for stack overflow, your program
will crash without an explicit explanation. On these systems, strange things may
happen when your stack gets too big, because your stack will run into part of
your program. It could be the main program, or it could be part of your data,
especially if you have a big array. If it runs into your program, your program will be
corrupted; you will have nonsense instructions and will crash as soon as they are exe-
cuted. If the stack runs into your data, what is likely to happen is that when you write

) |
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/* Bad use of recursion: Printing a Tinked list */
/* No header */

void
PrintList( List L )

{
/¥ 1*/ if( L 1= NULL )

/* 2%/ PrintElement( L->Element );
/* 3%/ PrintList( L->Next);

}

Figure 3.53 A bad use of recursion: printing a
linked list

something into your data, it will destroy stack information—probably the return
address—and your program will attempt to return to some weird address and crash.

In normal events, you should not run out of stack space; doing so is usually an
indication of runaway recursion (forgetting a base case). On the other hand, some
perfectly legal and seemingly innocuous program can cause you to run out of stack
space. The routine in Figure 3.53, which prints out a linked list, is perfectly legal and
actually correct. It properly handles the base case of an empty list, and the recursion
is fine. This program can be proven correct. Unfortunately, if the list contains 20,000
elements, there will be a stack of 20,000 activation records representing the nested
calls of line 3. Activation records are typically large because of all the information
they contain, so this program is likely to run out of stack space. (If 20,000 elements
are not enough to make the program crash, replace the number with a larger one.)

This program is an example of an extremely bad use of recursion known as tail
recursion. Tail recursion refers to a recursive call at the last line. Tail recursion can
be mechanically eliminated by changing the recursive call to a goto preceded by one
assignment per function argument. This simulates the recursive call because nothing
needs to be saved; after the recursive call finishes, there is really no need to know the
saved values. Because of this, we can just go to the top of the function with the values
that would have been used in a recursive call. The program in Figure 3.54 shows the
improved version. Keep in mind that you should use the more natural while loop
construction. The goto is used here to show how a compiler might automatically
remove the recursion.

Removal of tail recursion is so simple that some compilers do it automatically.
Even so, it is best not to find out that yours does not.

Recursion can always be completely removed (the compiler does so in converting
to assembly language), but doing so can be quite tedious. The general strategy
requires using a stack and is worthwhile only if you can manage to put the bare
minimum on the stack. We will not dwell on this further, except to point out
that although nonrecursive programs are certainly generally faster than equivalent
recursive programs, the speed advantage rarely justifies the lack of clarity that results
from removing the recursion.
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/* Printing a linked 1list non-recursively */
/* Uses a mechanical translation */
/* No header */

void
PrintList( List L )
{
top:
ifC L != NULL )
{
PrintElement( L->Element );
= L->Next;
goto top;

}

Figure 3.54 Printing a list without recursion; a com-
piler might do this (you should not)

3.4. The Queue ADT

Like stacks, queues are lists. With a queue, however, msertlon is done at one end
whereas deletion is performed at the other end \

3.4.1. Queue Model

The basic operations on a queue are Enqueué,‘WH' hoinserts an eleniehtna
of the list (called the rear), and Dequene, which deletes (and returns) the _
the start of the list (known as the front). Figure 3 55 shows the abstract model ofa
queue.

3.4.2. Array Implementation of Queues

As with stacks, any list implementation is legal for queues. Like stacks, both
the linked list and array implementations give fast O(1) running times for every
operation. The linked list implementation is straightforward and left as an exercise.
We will now discuss an array implementation of queues,

Figure 3.55 Model of a queue

Degueue Q) Enqueue (Q)

Queue Q
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For each queue data structure, we keep an array, Quewne[], and the positions
Front and Rear, which represent the ends of the queue. We also keep track of the
number of elements that are actually in the queue, Size. All this information is
part of one structure, and as usual, except for the queue routines themselves, no
routine should ever access these directly. The following figure shows a queue in
some intermediate state. By the way, the cells that are blanks have undefined values
in them. In particular, the first three cells have elements that used to be in the queue.

5

1

Front

-

Rear

The operations should be clear. To Engueue an element X, we increment Size
and Rear, then set Queune[Rear] = X. To Dequeue an element, we set the return value
to Queuel[Front], decrement Size, and then increment Front. Other strategies are
possible (this is discussed later). We will comment on checking for errors presently.

There is one potential problem with this implementation. After 10 Enqueues,
the queue appears to be full, since Rear is now 10, and the next Engueue would be
in a nonexistent position. However, there might only be a few elements in the queue,
because several elements may have already been dequeued. Queues, like stacks,
frequently stay small even in the presence of a lot of operations.

The simple solution is that whenever Front or Rear gets to the end of the array,
it is wrapped around to the beginning. The following figure shows the queue during
some operations. This is known as a cireular array implementation.

The extra code required to implement the wraparound is minimal (although it
probably doubles the running time). If incrementing either Rear or Front causes it
to go past the array, the value is reset to the first position in the array.

Initial State

2 4
Front Rear
After Enqueune(1)

1 2| 4
Rear Front
After Enqueue(3)

113 2| 4
Rear Front
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After Dequeue, Which Returns 2
1|3 2| 4
Rear Front
After Dequeue, Which Returns 4
113 2| 4
k:rontRear
After Dequeue, Which Returns 1
113 2| 4
Rear
Front
After Dequeue, Which Returns 3
and Makes the Queue Empty
113 2| 4
Rear Front

There are two warnings about the circular array implementation of queues.
First, it is important to check the queue for emptiness, because a Degueue when the
queue is empty will return an undefined value, silently.

Second, some programmers use different ways of representing the front and
rear of a queue. For instance, some do not use an entry to keep track of the size,
because they rely on the base case that when the queue is empty, Rear = Front — 1.
The size is computed implicitly by comparing Rear and Front. This is a very tricky
way to go, because there are some special cases, so be very careful if you need to
modify code written this way. If the size is not part of the structure, then if the array
size is ASize, the queue is full when there are ASize — 1 elements, since only ASize
different sizes can be differentiated, and one of these is 0. Pick any style you like
and make sure that all your routines are consistent. Since there are a few options for
implementation, it is probably worth a comment or two in the code, if you don’t
use the size field.
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In applications where you are sure that the number of Enqueues is not larger
than the size of the queue, the wraparound is not necessary. As with stacks, Dequeues
are rarely performed unless the calling routines are certain that the queue is not
empty. Thus error calls are frequently skipped for this operation, except in critical
code. This is generally not justifiable, because the time savings that you are likely to
achieve are minimal.

We finish this section by writing some of the queue routines. We leave the
others as an exercise. First, we give the queue declarations in Figure 3.56. We
add a maximum size field, as was done for the array implementation of the stack;
CreateQueue and DisposeQueue routines also need to be provided We also provide
routines to test whether a queue is empty and to make an empty queue (Figs.
3.57 and 3.58). The reader can write the function IsFull, which performs the test

Figure 3.56 Type declarations for queue—array
implementation

#1ifndef _Queue_h

struct QueueRecord;
typedef struct QueueRecord *Queue;

int IsEmpty( Queue Q );

int IsFull( Queue Q );

Queue CreateQueue( int MaxElements );
void DisposeQueue( Queue Q ):

void MakeEmpty( Queue Q );

void Enqueue( ElementType X, Queue Q );
ElementType Front( Queue Q );

void Dequeue( Queue Q );

ElementType FrontAndDequeue( Queue Q );

#endif /* _Queue_h */

/* Place in implementation file */
/* Queue implementation is a dynamically allocated array */
#define MinQueueSize ( 5 )

struct QueueRecord
{
int Capacity;
int Front;
int Rear;
int Size;
ElementType *Array;
b
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int
IsEmpty( Queue Q )
{

}

return Q->Size == 0;

Figure 3.57 Routine to test whether a queue is empty—
array implementation

void
MakeEmpty( Queue Q )
{

Q->Size = 0;
Q->Front = 1;
Q->Rear = 0;

}

Figure 3.58 Routine to make an empty queue—
array implementation

static int
Succ( int Value, Queue Q )

if( ++Value == Q->Capacity )
Value = 0;
return Value;

}

void
Enqueue( ElementType X, Queue Q )

if( IsFu11( Q) )
Error( "Full queue" );
else
{
Q->Size++;
Q->Rear = Succ( Q->Rear, Q );
Q->Array[ Q->Rear ] = X;

}

Figure 3.59 Routines to enqueue—
array implementation
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implied by its name. Notice that Rear is preinitialized to 1 before Front. The final
operation we will write is the Engueue routine. Following the exact description
above, we arrive at the implementation in Figure 3.59.

3.4.3. Applications of Queues

There are several algorithms that use queues to give efficient running times. Several
of these are found in graph theory, and we will discuss them in Chapter 9. For now,
we will give some simple examples of queue usage.

When jobs are submitted to a printer, they are arranged in order of arrival.
Thus, essentially, jobs sent to a line printer are placed on a queue.*

Virtually every real-life line is (supposed to be) a queue. For instance, lines at
ticket counters are queues, because service is first-come first-served.

Another example concerns computer networks. There are many network setups
of personal computers in which the disk is attached to one machine, known as the file
server. Users on other machines are given access to files on a first-come first-served
basis, so the data structure is a queue.

Further examples include the following:

¢ Calls to large companies are generally placed on a queue when all operators
are busy.

e In large universities, where resources are limited, students must sign a waiting
list if all terminals are occupied. The student who has been at a terminal the
longest is forced off first, and the student who has been waiting the longest is
the next user to be allowed on.

A whole branch of mathematics, known as queueing theory, deals with com-
puting, probabilistically, how long users expect to wait on a line, how long the line
gets, and other such questions. The answer depends on how frequently users arrive
to the line and how long it takes to process a user once the user is served. Both
of these parameters are given as probability distribution functions. In simple cases,
an answer can be computed analytically. An example of an easy case would be a
phone line with one operator. If the operator is busy, callers are placed on a waiting
line (up to some maximum limit). This problem is important for businesses, because
studies have shown that people are quick to hang up the phone.

If there are k operators, then this problem is much more difficult to solve.
Problems that are difficult to solve analytically are often solved by a simulation. In
our case, we would need to use a queue to perform the simulation. If k is large, we
also need other data structures to do this efficiently. We shall see how to do this
simulation in Chapter 5. We could then run the simulation for several values of &
and choose the minimum k that gives a reasonable waiting time.

Additional uses for queues abound, and as with stacks, it is staggering that such
a simple data structure can be so important.

*We say essentially because jobs can be killed. This amounts to a deletion from the middle of the queue,
which is a violation of the strict definition.
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Summary

This chapter describes the concept of apTs and illustrates the concept with three
of the most common abstract data types. The primary objective is to separate the
implementation of the abstract data types from their function. The program must
know what the operations do, but it is actually better off not knowing how it is
done.

Lists, stacks, and queues are perhaps the three fundamental data structures in
all of computer science, and their use is documented through a host of examples.
In particular, we saw how stacks are used to keep track of procedure and function
calls and how recursion is actually implemented. This is important to understand,
not just because it makes procedural languages possible, but because knowing how
recursion is implemented removes a good deal of the mystery that surrounds its use.
Although recursion is very powerful, it is not an entirely free operation; misuse and
abuse of recursion can result in programs crashing.

Exercises

3.1 Write a program to print out the elements of a singly linked list.

3.2 You are given a linked list, L, and another linked list, P, containing integers
sorted in ascending order. The operation PrintLots(L,P) will print the elements
in L that are in positions specified by P. For instance, if P = 1, 3,4, 6, the
first, third, fourth, and sixth elements in L are printed. Write the procedure
.PrintLots(L,P). You should use only the basic list operations. What is the
running time of your procedure?

3.3 Swap two adjacent elements by adjusting only the pointers (and not the data)
using:
a. Singly linked lists.
b. Doubly linked lists.

3.4 Given two sorted lists, L; and L;, write a procedure to compute L1 N L; using
only the basic list operations.

3.5 Given two sorted lists, L; and L;, write a procedure to compute L, U L, using
only the basic list operations.

3.6 Write a function to add two polynomials. Do not destroy the input. Use a linked
list implementation. If the polynomials have M and N terms, respectively, what
is the time complexity of your program?

3.7 Write a function to multiply two polynomials, using a linked list implementation.
You must make sure that the output polynomial is sorted by exponent and has
at most one term of any power.

a. Give an algorithm to solve this problem in O(M2N?2) time.

*b. Write a program to perform the multiplication in O(M2N) time, where M
is the number of terms in the polynomial of fewer terms.
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3.8

3.9

3.10

3.11

3.12

3.13

*c. Write a program to perform the multiplication in O(M N log(M N)) time.
d. Which time bound above is the best?
Write a program that takes a polynomial, F(X), and computes (F(X ). What

is the complexity of your program? Propose at least one alternative solution
that could be competitive for some plausible choices of F(X) and P.

Write an arbitrary-precision integer arithmetic package. You should use a
strategy similar to polynomial arithmetic. Compute the distribution of the
digits 0 to 9 in 24000,

The Josephus problem is the following game: N people, numbered 1 to N, are
sitting in a circle. Starting at person 1, a hot potato is passed. After M passes,
the person holding the hot potato is eliminated, the circle closes ranks, and the
game continues with the person who was sitting after the eliminated person
picking up the hot potato. The last remaining person wins. Thus, if M = 0
and N = §, players are eliminated in order, and player 5 wins. If M = 1 and
N = S, the order of elimination is 2, 4, 1, 5.

a. Write a program to solve the Josephus problem for general values of M
and N. Try to make your program as efficient as possible. Make sure you
dispose of cells.

b. What is the running time of your program?

c. If M = 1, what is the running time of your program? How is the actual
speed affected by the free routine for large values of N (N > 10,000)?

Write a program to find a particular element in a singly linked list. Do this
both recursively and nonrecursively, and compare the running times. How big
does the list have to be before the recursive version crashes?

a. Write a nonrecursive procedure to reverse a singly linked list in O(N) time.

*b. Write a procedure to reverse a singly linked list in O(N) time using constant
extra space.

Write a function to read in a sparse matrix and set up its linked list represent-
ation.

3.14 Write a program to read a graph into adjacency lists using:

3.15

3.16

a. Linked lists.
b. Cursors.

a. Write an array implementation of self-adjusting lists. A self-adjusting list is
like a regular list, except that all insertions are performed at the front, and
when an element is accessed by a Find, it is moved to the front of the list
without changing the relative order of the other items.

b. Werite a linked list implementation of self-adjusting lists.

c. Suppose each element has a fixed probability, p;, of being accessed. Show
that the elements with highest access probability are expected to be close
to the front.

Suppose we have an array-based list A[0..N — 1] and we want to delete
all duplicates. LastPosition is initially N — 1, but gets smaller as elements
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/*

/*
/*
/*
/'k

/'k

1*/

2%/
3*/
4%/
5%/

6*/

for( i = 0; i < LastPosition; i++ )
{
j=1+1;
while( j < LastPosition )
iFCALi ]l ==A[31)
Delete( j );
else
J++;
}

Figure 3.60 Routine to remove duplicates from a list—

array implementation

are deleted. Consider the pseudocode program fragment in Figure 3.60. The
procedure Delete deletes the element in position j and collapses the list.

a.
b.

*C.

Explain how this procedure works. ‘
Rewrite this procedure using general list operations.

Using a standard array implementation, what is the running time of this
procedure?

. What is the running time using a linked list implementation?

Give an algorithm to solve this problem in O(N log N) time.

Prove that any algorithm to solve this problem requires (N log N} com-
parisons if only comparisons are used. (Hint: Look to Chapter 6.)

. Prove that if we allow operations besides comparisons, and the keys are

real numbers, then we can solve the problem without using comparisons
between elements,

3.17 An alternative to the deletion strategy we have given is to use lazy deletion.
To delete an element, we merely mark it deleted (using an extra bit field), The
number of deleted and nondeleted elements in the list is kept as part of the
data structure. If there are as many deleted elements as nondeleted elements,
we traverse the entire list, performing the standard deletion algorithm on all
marked nodes.

a.

b.

List the advantages and disadvantages of lazy deletion.

Write routines to implement the standard linked list operations using lazy
deletion.

3.18 Write a program to check for balancing symbols in the following languages:

a.

b.

*c.

Pascal (beginfend, (), 1, {}).
C (), [1,{}).

Explain how to print out an error message that is likely to reflect the
probable cause.

3.19 Write a program to evaluate a postfix expression.
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3.20 a. Write a program to convert an infix expression which includes ‘C, ‘), *+’,
‘=2 % and ‘/ to postfix. ‘
b. Add the exponentiation operator to your repertoire.
c. Write a program to convert a postfix expression to infix.

3.21 Write routines to implement two stacks using only one array. Your stack
routines should not declare an overflow unless every slot in the array is used.

3.22*a, Propose a data structure that supports the stack Push and Pop operations
and a third operation FindMin, which returns the smallest element in the
data structure, all in O(1) worst case time.

*b. Prove that if we add the fourth operation DeleteMinn which finds and
removes the smallest element, then at least one of the operations must take
Q(log N) time. (This requires reading Chapter 6.)

3.23 * Show how to implement three stacks in one array.

3.24 If the recursive routine in Section 2.4 used to compute Fibonacci numbers is
run for N = 50, is stack space likely to run out? Why or why not?

3.25 Write the routines to implement queues using:
a. Linked lists '
b. Arrays
3.26 A deque is a data structure consisting of a list of items, on which the following
* operations are possible:
Push(X,D): Insert item X on the front end of deque D.
Pop(D): Remove the front item from deque D and return it.
Inject(X,D): Insert item X on the rear end of deque D.
Eject(D): Remove the rear item from deque D and return it.
Write routines to support the deque that take O(1) time per operation.



\k

Trees

For large amounts of input, the linear access time of linked lists is prohibitive.
In this chapter we look at a simple data structure for which the running time
of most operations is O(log N) on average. We also sketch a conceptually simple
modification to this data structure that guarantees the above time bound in the worst
case and discuss a second modification that essentially gives an O(log N') running
time per operation for a long sequence of instructions.

The data structure that we are referring to is known as a binary search tree.
Trees in general are very useful abstractions in computer science, so we will discuss
their use in other, more general applications. In this chapter, we will

e See how trees are used to implement the file system of several popular operating
systefns.

o See how trees can be used to evaluate arithmetic expressions.

® Show how to use trees to support searching operations in O(log N) average
time, and how to refine these ideas to obtain O(log N') worst-case bounds. We

will also see how to implement these operations when the data are stored on
a disk.

4.1. Preliminaries

4.1.1. Terminology

A tree can be defined in several ways. One natural way to define a tree is recursively.
A tree is a collection of nodes. The collection can be empty; otherwise, a tree consists
of a distinguished node 7, called the root, and zero or more nonempty (sub)trees T,
B, ..., T, each of whose roots are connected by a directed edge from .

The root of each subtree is said to be a child of r, and r is the parent of each
subtree root. Figure 4.1 shows a typical tree using the recursive definition.

From the recursive definition, we find that a tree is a collection of N nodes, one
of which is the root, and N — 1 edges. That there are N — 1 edges follows from the

CHAPTER 4
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fact that each edge connects some node to its parent, and every node except the root
has one parent (see Fig. 4.2).

Figure 4.2 A tree

In the tree of Figure 4.2, the root is A. Node F has A as a parent and K, L,
and M as children. Each node may have an arbitrary number of children, possibly
zero. Nodes with no children are known as leaves; the leaves in the tree above are
B,C,H,I,P,Q,K,L,M, and N, Nodes with the same parent are siblings; thus K,
L, and M are all siblings. Grandparent and grandchild relations can be defined in a
similar manner.

A path from node 7 to n,, is defined as a sequence of nodes 1y, #,, ..., 1, such
that #; is the parent of #;+1 for 1 = i < k. The length of this path is the number of
edges on the path, namely k& — 1. There is a path of length zero from every node to
itself. Notice that in a tree there is exactly one path from the root to each node.

For any node #;, the depth of »; is the length of the unique path from the root
to #;. Thus, the root is at depth 0. The beight of #; is the length of the longest path
from #; to a leaf. Thus all leaves are at height 0. The height of a tree is equal to the
height of the root. For the tree in Figure 4.2, E is at depth 1 and height 2; F is at
depth 1 and height 1; the height of the tree is 3. The depth of a tree is equal to the
depth of the deepest leaf; this is always equal to the height of the tree.

If there is a path from 7y to n,, then n; is an ancestor of n; and n; is a
descendant of n1. If ny # ny, then ny is a proper ancestor of n; and n; is a proper
descendant of n,.

4.1.2. Implementation of Trees

One way to implement a tree would be to have in each node, besides its data, a
pointer to each child of the node. However, since the number of children per node
can vary so greatly and is not known in advance, it might be infeasible to make the
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typedef struct TreeNode *PtrToNode;
struct TreeNode

ElementType Element;
PtrToNode FirstChild;
PtrToNode NextSibling;

}

Figure 4.3 Node declarations for trees

B (C) (D) E)-

Ty

®—Q

Figure 4.4 First child/next sibling representation of the tree shown in Figure 4.2

children direct links in the data structure, because there would be too much wasted
space. The solution is simple: Keep the children of each node in a linked list of tree
nodes. The declaration in Figure 4.3 is typical.

Figure 4.4 shows how a tree might be represented in this implementation.
Arrows that point downward are FirstChild pointers. Arrows that go left to right
are NextSibling pointers. Null pointers are not drawn, because there are too many.

In the tree of Figure 4.4, node E has both a pointer to a sibling (F) and a pointer
to a child (I), while some nodes have neither.

4.2. Binary Trees

A binary tree is a tree in which no node can have more than two children.

Figure 4.5 shows that a binary tree consists of a root and two subtrees, T and
Tg, both of which could possibly be empty.

A property of a binary tree that is sometimes important is that the depth of
an average binary tree is considerably smaller than N. An analysis shows that the
average depth is O( JN), and that for a special type of binary tree, namely the
binary search tree, the average value of the depth is O(log N). Unfortunately, the
depth can be as large as N — 1, as the example in Figure 4.6 shows.
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TL TR

Figure 4.5 Generic binary tree

Figure 4.6 Worst-case binary tree

4.2.1. Implementation

Because a binary tree has at most two children, we can keep direct pointers to them.
The declaration of tree nodes is similar in structure to that for doubly linked lists, in
that a node is a structure consisting of the Key information plus two pointers (Left
and Right) to other nodes (see Fig. 4.7).

Many of the rules that apply to linked lists will apply to trees as well. In
particular, when an insertion is performed, a node will have to be created by a call
to malloc. Nodes can be freed after deletion by calling free.

We could draw the binary trees using the rectangular boxes that are customary
for linked lists, but trees are generally drawn as circles connected by lines, be-
cause they are actually graphs. We also do not explicitly draw NULL pointers when

referring to trees, because every binary tree with N nodes would require N + 1
NULL pointers.

Binary trees have many important uses not associated with searching. One of

the principal uses of binary trees is in the area of compiler design, which we will
now explore.
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typedef struct TreeNode *PtrToNode;
typedef struct PtrToNode Tree;

struct TreeNode

ElementType Element;
Tree Left;
Tree Right;

b

Figure 4.7 Binary tree node declarations

4.2.2. Expression Trees

Figure 4.8 shows an example of an expression tree. The leaves of an expression
tree are operands, such as constants or variable names, and the other nodes contain
operators. This particular tree happens to be binary, because all of the operations
are binary, and although this is the simplest case, it is possible for nodes to have
more than two children. It is also possible for a node to have only one child, as is
the case with the unary minus operator. We can evaluate an expression tree, T, by
applying the operator at the root to the values obtained by recursively evaluating the
left and right subtrees. In our example, the left subtree evaluates to a + (b * ¢) and
the right subtree evaluates to ((d * ¢) + f) * g. The entire tree therefore represents
@+ (bxc))+(((dx*e)+ f)*g).

Figure 4.8 Expression tree for (@ + b*c) + ((d*e+ f)* g)

Constructing an Expression Tree

We now give an algorithm to convert a postfix expression into an expression tree.
Since we already have an algorithm to convert infix to postfix, we can generate
expression trees from the two common types of input. The method we describe
strongly resembles the postfix evaluation algorithm of Section 3.2.3. We read our
expression one symbol at a time. If the symbol is an operand, we create a one-node
tree and push a pointer to it onto a stack. If the symbol is an operator, we pop
pointers to two trees T and T, from the stack (T; is popped first) and form a new
tree whose root is the operator and whose left and right children point to T and Th,
respectively. A pointer to this new tree is then pushed onto the stack.
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As an example, suppose the input is

ab+cde+ *x

The first two symbols are operands, so we create one-node trees and push
pointers to them onto a stack.*

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a
pointer to it is pushed onto the stack.

* Next, ¢, d, and e are read, and for each a one-node tree is created and a pointer to
the corresponding tree is pushed onto the stack.

PR

Now a “+’ is read, so two trees are merged.

*For convenience, we will have the stack grow from left to right in the diagtams.



4.2. BINAKY TREES

(+) +
e ° d e

Continuing, a “*’ is read, so we pop two tree pointers and form a new tree with a ‘«’
as root.

N

Finally, the last symbol is read, two trees are merged, and a pointer to the final tree
is left on the stack.
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4.2.3. Tree TIraversals

We can produce an (overly parenthesized) infix expression by recursively producing
a parenthesized left expression, then printing out the operator at the root, and
finally recursively producing a parenthesized right expression. This general strategy
( left, node, right ) is known as an inorder traversal; it is easy to remember because
of the type of expression it produces. Procedure in Fig. 4.9 does this.

The general strategy of an inorder traversal is to process the left subtreefirst, then
perform processing at the current node, and finally process the right subtree. The
interesting part about this algorithm, aside from its simplicity, is that the total
running time is O(N). This is because there is constant work being performed at
every node in the tree. Each node is visited once, and the work performed at each
node is testing against NULL, setting up two procedure calls, and doing a Print-
Element. Since there is constant work per node and N nodes, the running time is
O(N).

An alternate traversal strategy is to recursively print out the left subtree, the right
subtree, and then the operator. If we apply this strategy to the tree in Fig. 4.8, the
outputis a b ¢ * +d exf + g* +, which is easily seen to be the postfix representation
of Section 3.3.3. This traversal strategy is generally known as a postorder traversal.

In general a postorder traversal is applied when we need to process subtrees first
before we can process a node. Another example is to compute the height of a node,
we need to know the height of the subtrees first. The code in Figure 4.10 computes
this. Since it is always a good idea to check the special cases—and crucial when
recursion is involved—notice that the routine will declare the height of a leaf to be
zero, which is correct. Again, the total running time is O(N), because constant
work is performed at each node.

The third popular traversal scheme is preorder traversal. Apply to the expression
tree in Fig.4.8, it is to print out the operator first and then recursively print out the
left and right subtrees. The resulting expression, + +a*bc*+=*defg, is the less
useful prefix notation.

The common idea in all of these routines is that you handle the NULL case first,
and then the rest. Notice the lack of extraneous variables. These routines pass only

Figure 4.9 Routine to print a binary search tree in
order

void
PrintTree( SearchTree T )
{
if( T != NULL )
{
PrintTree( T->Left );
PrintElement( T->Element );
PrintTree( T->Right );
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int
Height( Tree T )

if( T == NULL )
return -1;
else
return 1 + Max( Height( T->Left ),
Height( T->Right ) );
}

Figure 4.10 Routine to compute the height of a tree
using a postorder traversal

the tree, and do not declare or pass any extra variables. The more compact the code,
the less likely that a silly bug will turn up. A fourth, less often used, traversal (which
we have not seen yet) is level-order traversal. In a level-order traversal, all nodes at
depth D are processed before any node at depth D + 1. Level-order traversal differs
from the other traversals in that it is not done recursively; a queue is used, instead
of the implied stack of recursion.

An Application on UNIX File System

There are many applications for trees. One of the popular uses is the directory
structure in many common operating systems, including UNIX, VAX/VMS, and DOS.
Figure 4.11 is a typical directory in the unix file system.

The root of this directory is /usr. (The asterisk next to the name indicates that
fusr is itself a directory.) /usr has three children, mark, alex, and bill, which are
themselves directories. Thus, /usr contains three directories and no regular files.
The filename /usr/mark/book/ch1.r is obtained by following the leftmost child three
times. Each / after the first indicates an edge; the result is the full pathname. This
hierarchical file system is very popular, because it allows users to organize their
data logically. Furthermore, two files in different directories can share the same
name, because they must have different paths from the root and thus have different
pathnames. A directory in the UNIX file system is just a file with a list of all its
children, so the directories are structured almost exactly in accordance with the type
declaration in Fig. 4.3.* Indeed, if the normal command to print a file is applied to a
directory, then the names of the files in the directory can be seen in the output (along
with other non-asci information).

Suppose we would like to list the names of all of the files in the directory. Our
output format will be that files that are depth d; will have their names indented by
d; tabs. Our algorithm is given in Figure 4.12.

The heart of the algorithm is the recursive procedure ListDir. This routine needs
to be started with the directory name and a depth of 0, to signify no indenting for

*Each directory in the unix file system also has one entry that points to itself and another entry that points
to the parent of the directory. Thus, technically, the unix file system is not a tree, but is treelike.
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lusr*
mark* alex* bill*
T~
book* course*  junk.c jurlk.c work* course*
chlor ch2r «ch3r  cop3530* cop3212*
fall96*  spr97* sum97* fall9e* fall97*

syl.r syl.r sylr pgrades proglr prog2.r prog2.r progl.r  grades

Figure 4.11 Unix directory

static void )
ListDir( DirectoryOrFiie D, int Depth )

{
/* 1%/ if( D is a legitimate entry )
{
/* 2%/ PrintName( D, Depth );
/% 3%/ if( D is a directory )
/* 4%/ for each child, C, of D
/* 5%/ ListDir( C, Depth + 1 );
}
}
void

ListDirectory( DirectoryOrFile D )

ListDir( D, 0 );
}

Figure 4.12 Routine to list a directory in a hierarchical
file system

the root. This depth is an internal bookkeeping variable, and is hardly a parameter
that a calling routine should be expected to know about. Thus the driver routine
ListDirectory is used to interface the recursive routine to the outside world.

The logic of the algorithm is simple to follow. The argument to LiszDir is some
sort of reference into the tree. As long as the reference is valid, the name implied
by the reference is printed out with the appropriate number of tabs. If the entry
is a directory, then we process all children recursively, one by one. These children
are one level deeper, and thus need to be indented an extra space. The output is in
Figure 4.13.

This is an application of the preorder traversal, and itis clear that the total
amount of work is constant per node. If there are N file names to be output, then
the running time is O(N).
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Figure 4.13 The (preorder) directory listing

/usr
mark
book
chrl.c
chr2.c
chr3.c
course
cop3530
fal196
syl.r
spr97
syl.r
sum97
syl.r
junk.c
alex
junk.c
bill
work
course
cop3212
fal196
grades
progl.r
prog2.r
fal197
prog2.r
progl.r
grades

As an example of postorder traversal application, Figure 4.14 represents the
same directory structure as before, with the numbers in parentheses representing
the number of disk blocks taken up by each file.

Jusr*(1)
mark*(1) alex*(1) bill*(1)
book*(1) course*(1) junk.c(6) junk.c(8) work*(1) course*(1)
ch1.r(3) ch2.r(2) ch3.1(4) cop3530*(1) cop3212*(1)
fall96*(1) spr97*(1) sum97*(1) fall96*(1) fall97*(1)

syl.r(1)  sylr(5) syl.n(2) grades(3) progl.r(4) prog2.r(1) prog2.r(2) progl.r(7) grades(9)

Figure 4.14 Unix directory with file sizes obtained via postorder traversal
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Since the directories are themselves files, they have sizes too. Suppose we would
like to calculate the total number of blocks used by all the files in the tree. The
most natural way to do this would be to find the number of blocks contained in the
subdirectories /usr/mark (30), /usr/alex (9), and /usr/bill (32). The total number of
blocks is then the total in the subdirectories (71) plus the one block used by /usr, for
a total of 72. The function SizeDirectory in Figure 4.15 implements this strategy.

Figure 4.15 Routine to calculate the size of a directory

static void
SizeDirectory( DirectoryOrFile D )

{
int TotalSize;
/¥ 1*/ TotalSize = 0;
/* 2%/ if( D is a legitimate entry )
{
/% 3%/ TotalSize = FileSize( D );
/* 4%/ if( D is a directory )
/* 5%/ for each child, C, of D
/% 6%/ TotalSize += SizeDirectory( C );
}
/* 7%/ return TotalSize;
}

If D is not a directory, then SizeDirectory merely returns the number of blocks
used by D. Otherwise, the number of blocks used by D is added to the number of
blocks (recursively) found in all of the children. To see the difference between the
postorder traversal strategy and the preorder traversal strategy, Figure 4.16 shows
how the size of each directory or file is produced by the algorithm.

Threaded Binary Trees

Since a binary tree with N nodes has N + 1 NULL pointers, half the space
allocated in a binary tree for pointer information is wasted. A. J. Perlis and C.
Thornton have made a clever use of these NULL links by replacing them by
pointers, called thread, to other nodes in the tree. The rules ate that if a node has
a NULL left child, we make its left child point to its inorder predecessor, and if a
node has a NULL right child, we make its right child point to its inorder successor.
This is known as a threaded binary tree.

When we represent the tree in memory, we must be able to distinguish threads
from real children pointers. This is done by adding two additional Boolean fields to
the TreeNode structure, namely LeftThread and RightThread. If the value of
LeftThread is TRUE, then the corresponding Left pointer contains a thread,
otherwise it contains a pointer to the left child. Similatly, Right pointer contains
a thread if RightThread is TRUE, othetwise it contains a pointer to the right child
(see Fig. 4.17).
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chl.r 3

ch2.r 2

ch3.r 4

book 10
syl.r 1

fal196 2

syl.r 5

spr97 6

syl.r 2

sum97 3

cop3530 12

course 13
junk.c 6
mark 30
junk.c 8
alex 9
work 1
grades 3

progli.r 4

prog2.r 1

fal196 9

prog2.r 2

progl.r 7

grades 9

fal197 19

cop3212 29

course 30
bill 32
/usr 72

Figure 4.16 Trace of the SizeDirectory function

typedef struct ThreadedTreeNode *PtrTo ThreadedNode;
typedef struct PtrToThreadedNode ThreadedTree;

struct ThreadedTreeNode

{
ElementType Element;
int LeftThread;
ThreadedTree Left;
int RightThread;
ThreadedTree Right;

b

Figure 4.17 Threaded binary tree node declarations
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Notice that the first node in the inorder traversal has no predecessor and hence
its left child pointer will still be left dangling. Similarly, the last node in the
inorder traversal will have a NULL right child pointer since it has no successor.
To avoid loose threads in a tree, a beader node is kept as a sentinel. The left child
of the header is the root of the actual tree and the right child pointer links back
to the header itself. Both of the loose threads are directed to the header. The
threaded binary tree corresponding to Fig. 4.8 is shown in Fig. 4.18.

Inotder traversal is simplified with the use of threads since finding the inorder
successor of any node can be done without using a stack. If a node’s RightThread
is TRUE, its inorder successor is just Right by definition; otherwise we can obtain
its inorder successor by following a path of Lef# links from the node’s right child
until a node with TRUE value of LeftThread is reached. Fig. 4.19 shows the code
for finding the inorder successor for any node in a threaded tree.

Figure 4.18 Threaded binary tree corresponding to Fig. 4.8

ThreadedTree
Inordersuccessor( ThreadedTree T )

i
ThreadedTree Tmp = T->Right;

if ( !T->RightThread )
while ( !Tmp->LeftThread )
Tmp = Tmp->Left;

Return Tmp;
1

Figure 4.19 Finding the inorder successor of a node in a threaded tree
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4.3. ‘The Search Tree ApT—Binary Search Trees

An important application of binary trees is their use in searching. Let us assume that
each node in the tree is assigned a key value. In our examples, we will assume for
simplicity that these are integers, although arbitrarily complex keys are allowed. We
will also assume that all the keys are distinct, and deal with duplicates later.

The property that makes a binary tree into a binary search tree is that for every
node, X, in the tree, the values of all the keys in its left subtree are smaller than
the key value in X, and the values of all the keys in its right subtree are larger than
the key value in X. Notice that this implies that all the elements in the tree can be
ordered in some consistent manner. In Figure 4.20, the tree on the left is a binary
search tree, but the tree on the right is not. The tree on the right has a node with key
7 in the left subtree of a node with key 6 (which happens to be the root).

Figure 4.20 Two binary trees (only the left tree is a search tree)

We now give brief descriptions of the operations that are usually performed
on binary search trees. Note that because of the recursive definition of trees, it is
common to write these routines recursively. Because the average depth of a binary
search tree is O(logN), we generally do not need to worry about running out
of stack space. We repeat our type definition in Figure 4.21. and list the function
prototypes. Since all the elements can be ordered, we wili assume that the operators
<, >, and = can be applied to them, even if this might be syntactically erroneous
for some types.

4.3.1. MakeEmpty

This operation is mainly for initialization. Some programmers prefer to initialize
the first element as a one-node tree, but our implementation follows the recursive
definition of trees more closely. It is also a simple routine, as evidenced by Fig-
ure 4,22.

4.3.2. Find

This operation generally requires returning a pointer to the node in tree T that has
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#ifndef _Tree_H

struct TreeNode; )
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;

SearchTree MakeEmpty( SearchTree T );

Position Find( ElementType X, SearchTree T );
Position FindMin( SearchTree T ); .

Position FindMax( SearchTree T ); )
SearchTree Insert( ElementType X, SearchTree T );
SearchTree Delete( ElementType X; SearchTree T );
ElementType Retrieve( Position P ); : :

#endif /* _TEee_H */

/* Place in the implementation file */
struct TreeNode 4

{
ElementType Element;
SearchTree Left;
SearchTree Right;
&

Figure 4.21 Binary search tree declarations

SearchTree . .
MakeEmpty( SearchTree T )
{

FFC T != NULL )

{
MakeEmpty( T->Left );
MakeEmpty( T->Right );
free( T );

return NULL;
}

Figure 4.22 Routine to make an empty tree

key X, or NULL if there is no such node. The structure of the tree makes this simple.
If Tis NULL, then we can just return NULL. Otherwise, if the key stored at T is
X, we can return T. Otherwise, we make a recursive call on a subtree of T, either
left or right, depending on the relationship of X to the key stored in T. The code in
Figure 4.23 is an implementation of this strategy.

Notice the order of the tests. It is crucial that the test for an empty tree be
performed first, since otherwise the indirections would be on a NULL pointer.
The remaining tests are arranged with the least likely case last. Also note that
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both recursive calls are actually tail recursions and can be easily removed with
an assignment and a goto. The use of tail recursion is justifiable here because the
simplicity of algorithmic expression compensates for the decrease in speed, and the
amount of stack space used is expected to be only O(log N).

Position
Find( ElementType X, SearchTree T )
{
if( T == NULL )
return NULL;
if( X < T->Element )
return Find( X, T->Left );
else
if( X > T->Element )
return Find( X; T->Right );
else
return T;

}
Figure 4.23 Find operation for binary search trees

4.3.3. FindMin and FindMax

These routines return the position of the smallest and largest elements in the tree,
respectively. Although returning the exact values of these elements might seem more
reasonable, this would be inconsistent with the Find operation. It is important that
similar-looking operations do similar things. To perform a FindMin, start at the root
and go left as long as there is a left child. The stopping point is the smallest element.
The FindMax routine is the same, except that branching is to the right child.

Figure 4.24 Recursive implementation of FindMin for
binary search trees

Positicn
FindMin( SearchTree T )
{
if( T == NULL )
return NULL;
else
if( T->Left == NULL )
return T;
else
return FindMin( T->Left );

This is so easy that many programmers do not bother using recursion. We
will code the routines both ways by doing FindMin recursively and FindMax non-
recursively (see Figs. 4.24 and 4.25).
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Position
FindMax({ SearchTree T )
{
JFC T != NULL )
while( T->Right != NULL )
T = T->Right;

return T;

}

Figure 4.25 Nonrecursive implementation of FindMax
for binary search trees

Notice how we carefuliy handle the degenerate case of an empty tree. Although
this is always important to do, it is especially crucial in recursive programs. Also
notice that it is safe to change T in FindMax, since we are only working with a copy.
Always be extremely careful, however, because a statement such as T—>Right =
T—>Right—>Right will make changes.

4.3.4. Insert

The insertion routine is conceptually simple. To insert X into tree T, proceed down
the tree as you would with a Find. If X is found, do nothing (or “update” something).
Otherwise, insert X at the last spot on the path traversed. Figure 4.26 shows what
happens. To insert 5, we traverse the tree as though a Find were occurring. At the
node with key 4, we need to go right, but there is no subtree, so § is not in the tree,
and this is the correct spot. .
Duplicates can be handled by keeping an extra field in the node record indicating
the frequency of occurrence. This adds some extra space to the entire tree, but is

Figure 4.26 Binary search trees before and after
inserting §
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SearchTree
Insert( ElementType X, SearchTree T )
{
/¥ 1%/ if( T == NULL )
{
/* Create and return a one-node tree */
/* 2%/ T = malloc( sizeof( struct TreeNode ) );
/* 3%/ if( T == NULL )
/* 4%/ FatalError( "Out of space!!!" );
else
{
/* 5%/ T->Element = X;
/* 6%/ T->Left = T->Right = NULL;
}
}
else
J* 7%/ if( X < T->Element )
/* 8%/ T->Left = Insert( X, T->Left );
else
/* 9%/ if( X > T->Element )
/*10*/ T->Right = Insert( X, T->Right );
/* Else X is 1in the tree already; we'll do nothing */
/*¥11*/ return T; /* Do not forget this line!! */
}

Figure 4.27 Insertion into a binary search tree

better than putting duplicates in the tree (which tends to make the tree very deep).
Of course this strategy does not work if the key is only part of a larger structure. If
that is the case, then we can keep all of the structures that have the same key in an
auxiliary data structure, such as a list or another search tree.

Figure 4.27 shows the code for the insertion routine. Since T points to the root
of the tree, and the root changes on the first insertion, Insert is written as a function
that returns a pointer to the root of the new tree. Lines 8 and 10 recursively insert
and attach X into the appropriate subtree.

4.3.5. Delete

As is common with many data structures, the hardest operation is deletion. Once
we have found the node to be deleted, we need to consider several possibilities.

If the node is a leaf, it can be deleted immediately. If the node has one child,
the node can be deleted after its parent adjusts a pointer to bypass the node (we will
draw the pointer directions explicitly for clarity). See Figure 4.28. Notice that the
deleted node is now unreferenced and can be disposed of only if a pointer to it has
been saved.

The complicated case deals with a node with two children. The general strat-
egy is to replace the data of this node with the smallest data of the right subtree (which
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Figure 4.28 Deletion of a node (4) with one child,
before and after

is easily found) and recursively delete that node (which is now empty). Because the
smallest node in the right subtree cannot have a left child, the second Delete is an
easy one. Figure 4.29 shows an initial tree and the result of a deletion. The node
to be deleted is the left child of the root; the key value is 2. It is replaced with the
smallest data in its right subtree (3), and then that node is deleted as before.

The code in Figure 4.30 performs deletion. It is inefficient, because it makes
two passes down the tree to find and delete the smallest node in the right subtree
when this is appropriate. It is easy to remove this inefficiency, by writing a special
DeleteMin function, and we have left it in only for simplicity.

If the number of deletions is expected to be small, then a popular strategy to
use is lazy deletion: When an element is to be deleted, it is left in the tree and
merely marked as being deleted. This is especially popular if duplicate keys are

Figure 4.29 Deletion of a node (2) with two children,
before and after
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SearchTree
Delete( ElementType X, SearchTree T )

{

}

Position TmpCell;

if( T == NULL )
Error( "Element not found" );

else

if( X < T->Element ) /* Go left */
T->Left = Delete( X, T->Left );

else

if( X > T->Element ) /* Go right */
T->Right = Delete( X, T->Left );

else /* Found element to be deleted */

if( T->Left && T->Right ) /* Two children */

{
/* Replace with smallest in r1ght subtree */
TmpCell = FindMin( T->Right:);- : e
T->Element = TmpCell- >E1ement. .
T->Right = Delete( T- >E1eme :

else /* One or zero chﬂd.ren */

TmpCell = T; : : \
if( T >Left == NULL ) /* A1 S0 hand1es 0 ch1'|dre
T—>R1ght. i
else 1f( T->Right == NULL )
= T->Lefy; ~ &N
free( TmpCeﬂ )
}
return T;

Figure 4,30 Deletion routine for binary search trees

present, because then the field that keeps count of the frequency of appearance
can be decremented. if the number of real nodes in the tree is the same as the
number of “deleted” nodes, then the depth of the tree is only expected to go up by
a small constant (why?), so there is a very small time penalty associated with lazy
deletion. Also, if a deleted key is reinserted, the overhead of allocating a new cell is

avoided.

4.3.6. Average-Case Analysis

Intuitively, we expect that all of the operations of the previous section, except
MakeEmpty, should take O(log N) time, because in constant time we descend a
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level in the tree, thus operating on a tree that is now roughly half as large. Indeed,
the running time of all the operations, except MakeEmpty, is O(d), where d is the
depth of the node containing the accessed key.

We prove in this section that the average depth over all nodes in a tree is
O(log N ) on the assumption that all trees are equally likely.

The sum of the depths of all nodes in a tree is known as the internal path length.
We will now calculate the average internal path length of a binary search tree, where
the average is taken over all possible insertion sequences into binary search trees.

Let D(N) be the internal path length for some tree T of N nodes. D(1) = 0. An
N-node tree consists of an i-node left subtree and an (N — i — 1)-node right subtree,
plus a root at depth zero for 0 = i < N. D(7) is the internal path length of the left
subtree with respect to its root. In the main tree, all these nodes are one level deeper.
The same holds for the right subtree. Thus, we get the recurrence

D(N) = D(i)+D(N—-i—-1)+ N -1

If all subtree sizes are equally likely, which is true for binary search trees (since the
subtree size depends only on the relative rank of the first element inserted into the
tree), but not binary trees, then the average value of both D(i) and D(N —i — 1) is
(1/N )Z D (7). This yields

hS
= 5| > D
N | <

This recurrence will be encountered and solved in Chapter 6, obtaining an average
value of D(N) = O(N logN). Thus, the expected depth of any node is O(log N).
As an example, the randomly generated 500-node tree shown in Figure 4.31 has
nodes at expected depth 9.98.

D(N) +N -1

Figure 431 A randomly generated binary search tree

)
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Figure 4.31 Binary search tree after ®(N?2) Insert/Delete pairs

It is tempting to say immediately that this result implies that the average running
time of all the operations discussed in the previous section is O(log N), but this
is not entirely true. The reason for this is that because of deletions, it is not clear
that all binary search trees are equally likely. In particular, the deletion algorithm
described above favors making the left subtrees deeper than the right, because we
are always replacing a deleted node with a node from the right subtree. The exact
effect of this strategy is still unknown, but it seems only to be a theoretical novelty.
It has been shown that if we alternate insertions and deletions ®(N2) times, then
the trees will have an expected depth of @(\/ﬁ ). After a quarter-million random
Insert/Delete pairs, the tree that was somewhat right-heavy in Figure 4.32 looks
decidedly unbalanced (average depth = 12.51). See Figure 4.31.

We could try to eliminate the problem-by randomly choosing between the
smallest element in the right subtree and the largest in the left when replacing
the deleted element. This apparently eliminates the bias and should keep the trees
balanced, but nobody has actually proved this. In any event, this phenomenon
appears to be mostly a theoretical novelty, because the effect does not show up at
all for small trees, and stranger still, if o(N2) Insert/Delete pairs are used, then the
tree seems to gain balance! .

The main point of this discussion is that deciding what “average” means is
generally extremely difficult and can require assumptions that may or may not be
valid. In the absence of deletions, or when lazy deletion is used, it can be shown
that all binary search trees are equally likely and we can conclude that the average
running times of the operations above are O(log N ). Except for strange cases like
the one discussed above, this result is very consistent with observed behavior.

If the input comes into a tree presorted, then a series of Inserts will take
quadratic time and give a very expensive implementation of a linked list, since the
tree will consist only of nodes with no left children. One solution to the problem is
to insist on gn extra structural condition called balance: no node is allowed to get
too deep.
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There are quite a few general algorithms to implement balanced trees. Most
are quite a bit more complicated than a standard binary search tree, and all take
longer on average for updates. They do, however, provide protection against the
embarrassingly simple cases. Below, we will sketch one of the oldest forms of
balanced search trees, the AvL tree.

A second, newer method is to forego the balance condition and allow the tree
to be arbitrarily deep, but after every operation, a restructuring rule is applied
that tends to make future operations efficient. These types of data structures are
generally classified as self-adjusting. In the case of a binary search tree, we can no
longer guarantee an O(log N) bound on any single operation, but can show that
any sequence of M operations takes total time O(M log N) in the worst case. This is
generally sufficient protection against a bad worst case. The data structure we will
discuss is known as a splay tree; its analysis is fairly intricate and is discussed in
Chapter 11. '

4.4. AvVL Trees

An avi (Adelson-Velskii and Landis) tree is a binary search tree with a balance
condition. The balance condition must be easy to maintain, and it ensures that the
depth of the tree is O(log N). The simplest idea is to require that the left and right
subtrees have the same height. As Figure 4.33 shows, this idea does not force the
tree to be shallow.

Another balance condition would insist that every node muist have left and right
subtrees of the same height. If the height of an empty subtree is defined to be —1
(as is usual), then only perfectly balanced trees of 2% — 1 nodes would satisfy this
criterion, Thus, although this guarantees trees of small depth, the balance condition
is too rigid to be useful and needs to be relaxed.

An AvL tree is identical to a binary search tree, except that for every node in the
tree, the height of the left and right subtrees can differ by at most 1. (The height
of an empty tree is defined to be —1.) In Figure 4.34 the tree on the left is an avL
tree, but the tree on the right is not. Height information is kept for each node
(in the node structure). It can be shown that the height of an AvL tree is at most roughly

Figure 433 A bad binary tree. Requiring balance at the root is not enough. -
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Figure 4.34 Two binary search trees. Only the left tree is AVL.

1.44log(N + 2) — .328, but in practice it is only slightly more than logN. As
an example, the avL tree of height 9 with the fewest nodes (143) is shown in
Figure 4.35. This tree has as a left subtree an avL tree of height 7 of minimum
size. The right subtree is an avL tree of height 8 of minimum size. This tells us
that the minimum number of nodes, S(b), in an AvL tree of height # is given by
Shy=Sh—-1)+Sh—-2)+1.Forh=0,80h) =1.Forbh =1, S(h) = 2. The
function S(b) is closely related to the Fibonacci numbers, from whlch the bound
claimed above on the height of an avL tree follows.

Thus, all the tree operations can be performed in O(log N ) time, except possibly
insertion (we will assume lazy deletion). When we do an insertion, we need to update
all the balancing information for the nodes on the path back to the root, but the
reason that insertiorr is potentially difficult is that inserting a node could violate the
AVL tree property. (For instance, inserting 6 into the avL tree in Figure 4.34 would
destroy the balance condition at the node with key 8.) If this is the case, then the
property has to be restored before the insertion step is considered over. It turns out
that this can always be done with a simple modification to the tree, known as a
rotation.

After an insertion, only nodes that are on the path from the insertion point
to the root might have their balance altered because only those nodes have their
subtrees altered. As we follow the path up to the root and update the balancing
information, we may find a node whose new balance violates the avL condition. We
will show how to rebalance the tree at the first (i.e., deepest) such node, and we will
prove that this rebalancing guarantees that the entire tree satisfies the AVL property.

Let us call the node that must be rebalanced «. Since any node has at most
two children, and a height imbalance requires that a’s two subtrees’ height differ by
two, it is easy to see that a violation might occur in four cases:

1. An insertion into the left subtree of the left child of a.

2. An insertion into the right subtree of the left child of a.
3. An insertion into the left subtree of the right child of a.
4. Aninsertion into the right subtree of the right child of .
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Figure 4.35 Smallest avL tree of height 9

Cases 1 and 4 are mirror image symmetries with respect to «, as are cases
2 and 3. Consequently, as a matter of theory, there are two basic cases. From a
programming perspective, of course, there are still four cases.

The first case, in which the insertion occurs on the “outside” (i.e., left-left or
right-right), is fixed by a single rotation of the tree. The second case, in which
the insertion occurs on the “inside” (i.e., left-right or right-left) is handled by the
slightly more complex double rotation. These are fundamental operations on the
tree that we’ll see used several times in balanced-tree algorithms. The remainder of
this section describes these rotations, proves that they suffice to maintain balance,
and gives a casual implementation of the avL tree. Chapter 12 describes other
balanced-tree methods with an eye toward a more careful implementation.

4.4.1. Single Rotation

Figure 4.36 shows the single rotation that fixes case 1. The before picture is on the
left, and the after is on the right. Let us analyze carefully what is going on. Node &,
violates the aviL balance property because its left subtree is two levels deeper than
its right subtree (the dashed lines in the middle of the diagram mark the levels).
The situation depicted is the only possible case 1 ‘scenario that allows k; to satisfy
the avL property before an insertion but violate it afterwards. Subtree X has grown
to an extra level, causing it to be exactly two levels deeper than Z. Y cannot be
at the same level as the new X because then k, would have been out of balance before
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the insertion, and Y cannot be at the same level as Z because then k1 would be the
first node on the path toward the root that was in violation of the avL balancing
condition.

To ideally rebalance the tree, we would like to move X up a level and Z down a
level. Note that this is actually more than the avL property would require. To do this,
we rearrange nodes into an equivalent tree as shown in the second part of Figure
4.36. Here is an abstract scenario: visualize the tree as being flexible, grab the child
node &y, close your eyes, and shake it, letting gravity take hold. The result is that k;
will be the new root. The binary seasch tree property tells us that in the original tree
ks > ki, so ka becomes the right child of k; in the new tree. X and Z remain as the
left child of k; and right child of k,, respectively. Subtree Y, which holds items that
are between k; and k; in the original tree, can be placed as ky’s left child in the new
tree and satisfy all the ordering requu'ements

As a result of this work, which requires only a few pointer changes, we have
another binary search tree that is'an avL tree. This happens because X moves up one
level, Y stays at the same level, and Z moves down one level. k, and k; not only
satisfy the AVL requirements, but they also have subtrees that are exactly the same
height. Furthermore, the new height of the entire subtree is exactly the same as the
height of the original subtree prior to the insertion that caused X to grow. Thus no
further updating of heights on the path to the root is needed, and consequently 7o
further rotations are needed. Figure 4.37 shows that after the insertion of 6 into

Figure 4.36 Single rotation to fix case 1

Figure 4.37 AVL property destroyed by insertion of 6,
then fixed by a single rotation -
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Figure 4.38 Single rotation fixes case 4

the original AvL tree on the left, node 8 becomes unbalanced. Thus, we do a single
rotation between 7 and 8, obtaining the tree an the right.

As we mentioned earlier, case 4 represents a symmetric case. Figure 4.38 shows
how a single rotation is applied. Let us work through a rather long example. Suppose
we start with an initially empty AvL tree and insert the keys 3, 2, 1, and then 4
through 7 in sequential order. The first problem occurs when it is time to insert
key 1 because the AvL property is violated at the root. We perform a single rotation
between the root and its left child to fix the problem. Here are the before and after
trees:

before after

A dashed line joins the two nodes that are the subject of the rotation. Next we
insert the key 4, which causes no problems, but the insertion of 5 creates a violation
at node 3 that is fixed by a single rotation. Besides the local change caused by the
rotation, the programmer must remember that the rest of the tree has to be informed
of this change. Here this means that 2’s right child must be reset to point to 4 instead
of 3. Forgetting to do so is easy and would destroy the tree (4 would be inaccessible).

8
.,
.,
\\
\

before e after
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Next we insert 6. This causes a balance problem at the root, since its left subtree
is of height 0 and its right subtree would be height 2. Therefore, we perform a single
rotation at the root between 2 and 4.

The rotation is performed by making 2 a child of 4 and 4’s original left subtree
the new right subtree of 2. Every key in this subtree must lie between 2 and 4, so
this transformation makes sense. The next key we insert is 7, which causes another
rotation:

before 0 after

4.4.2. Double Rotation

The algorithm described above has one problem: as Figure 4.39 shows, it does not
work for cases 2 or 3. The problem is that subtree Y is too deep, and a single
rotation does not make it any less deep. The double rotation that solves the problem
is shown in Figure 4.40.

The fact that subtree Y in Figure 4.39 has had an item inserted into it guar-
antees that it is nonempty. Thus, we may assume that it has a root and two subtrees.
Consequently, the tree may be viewed as four subtrees connected by three nodes. As
the diagram suggests, exactly one of tree B or C is two levels deeper than D (unless
all are empty), but we cannot be sure which one. It turns out not to matter; in Figure
4.40, both B and C are drawn at 1% levels below D.

To rebalance, we see that we cannot leave k3 as the root, and a rotation between
k3 and k; was shown in Figure 4.39 to not work, so the only alternative is to
place k; as the new root. This forces k; to be k;’s left child and k3 to be its right child,
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and it also completely determines the resulting locations of the four subtrees. It is
easy to see that the resulting tree satisfies the avL tree property, and as was the case
with the single rotation, it restores the height to what it was before the insertion,
thus guaranteeing that all rebalancing and height updating is complete. Figure 4.41
shows that the symmetric case 3 can also be fixed by a double rotation. In both
cases the effect is the same as rotating between a’s child and grandchild, and then
between a and its new child.

We will continue our previous example by inserting the keys 10 through 16 in
reverse order, followed by 8 and then 9. Inserting 16 is easy, since it does not destroy
the balance property, but inserting 15 causes a height imbalance at node 7. This is
case 3, which is solved by a right-left double rotation. In our example, the right-left
double rotation will involve 7, 16, and 15. In this case, k1 is the node with key 7, k3

Figure 4.39 Single rotation fails to fix case 2
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N

is the node with key 16, and k; is the node with key 15. Subtrees A, B, C, and D are
empty.

Next we insert 14, which also requires a double rotation. Here the double
rotation that will restore the tree is again a right~left double rotation that will
involve 6, 15, and 7. In this case, k; is the node with key 6, k; is the node with key
7, and k3 is the node with key 15. Subtree A is the tree rooted at the node with key
5; subtree B is the empty subtree that was originally the left child of the node with
key 7, subtree C is the tree rooted at the node with key 14, and finally, subtree D is
the tree rooted at the node with key 16.

before @ after

If 13 is now inserted, there is an imbalance at the root. Since 13 is not between
4 and 7, we know that the single rotation will work.

before @ after
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before @ after

To insert 11, a single rotation needs to be performed, and the same is true for
the subsequent insertion of 10. We insert 8 without a rotation creating an almost
perfectly balanced tree:

before

Finally, we will insert 9 to show the symmetric case of the double rotation.
Notice that 9 causes the node containing 10 to become unbalanced. Since 9 is
between 10 and 8 (which is 10’s child on the path to 9), a double rotation needs to
be performed, yielding the following tree:
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Let us summarize what happens. The programming details are fairly straight-
forward except that there are several cases. To insert a new node with key X into an
AvL tree T, we recursively insert X into the appropriate subtree of T (let us call this
TiRr). If the height of Ty r does not change, then we are done. Otherwise, if a height
imbalance appears in T, we do the appropriate single or double rotation depending
on X and the keys in T and Tig, update the heights (making the connection from
the rest of the tree above), and are done. Since one rotation always suffices, a
carefully coded nonrecursive version generally turns out to be significantly faster
than the recursive version. However, nonrecursive versions are quite difficult to code
correctly, so many programmers implement AVL trees recursively.

Another efficiency issue concerns storage of the height information. Since all
that is really required is the difference in height, which is guaranteed to be small,
we could get by with two bits (to represent +1, 0, —1) if we really try. Doing so
will avoid repetitive calculation of balance factors but results in some loss of clarity.
The resulting code is somewhat more complicated than if the height were stored
at each node. If a recursive routine is written, then speed is probably not the main
consideration. In this case, the slight speed advantage obtained by storing balance
factors hardly seems worth the loss of clarity and relative simplicity. Furthermore,
since most machines will align this to at least an 8-bit boundary anyway, there is
not likely to be any difference in the amount of space used. Eight bits will allow us
to store absolute heights of up to 255. Since the tree is balanced, it is inconceivable
that this would be insufficient (see the exercises).

With all this, we are ready to write the avL routines. We will do only a partial
job and leave the rest as an exercise. First, we need the declarations. These are given
in Figure 4.42. We also need a quick function to return the height of a node. This
function is necessary to handle the annoying case of a NULL pointer. This is shown

115



116

CHAPTER 4/TREES

in Figure 4.43. The basic insertion routine is easy to write, since it consists mostly

of function calls (see Fig. 4.44).
For the trees in Figure 4.45, SmgleRotateWzthLeft converts the tree on the left

to the tree on the right, returning a pointer to the new root. SingleRotate WithRight
is symmetric. The code is shown in Figure 4.46.

Figure 4.42 Node declaration for AvL trees

#ifndef _AviTree_H

struct AviNode;
typedef struct AviNode *Position;
typedef struct AviNode *AviTree;

AviTree MakeEmpty( AviTree T );

Position Find( ElementType X, AviTree T );
Position FindMin( AvlTree T );

Position FindMax( AviTree T );

AviTree Insert( ElementType X, AviTree T );
AviTree Delete( ElementType X, AviTree T );
ElementType Retrieve( Position P );

#endif /* _AvlTree_H */

/* Place in the implementation file */
struct AviNode

{
ElementType Element;
AviTree Left;
AviTree Right;
int Height;

b

Figure 4.43 Function to compute height of an avL node

static int
Height( Position P )
{
if( P == NULL )
return -1;
else
return P->Height;
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AvlTree
Insert( ElementType X, AviTree T )

}

if( T == NULL )

{
-/* Create and return a one-node tree */
T = malloc( sizeof( struct AvlNode ) );
if( T == NULL )
FatalError( "Out of space!!!" );
else
T->Element = X; T->Height = 0;
T->Left = T->Right = NULL;
}
}
else
if( X < T->Element )
{
T->Left = Insert( X, T->Left );
if( Height( T->Left ) - Height( T->Right ) == 2 )
if( X < T->Left->Element )
T = SingleRotateWithLeft( T );
else
T = DoubleRotateWithLeft( T );
}
else

if( X > T->Element )

T->Right = Insert( X, T->Right );
if( Height( T->Right ) - Height( T->Left ) == 2 )
if( X > T->Right->Element )
T = SingleRotateWithRight( T );
else
T

DoubleRotateWithRight( T );

}
/* Else X is in the tree already; we'll do nothing */

T->Height = Max( Height( T->Left ), Height( T->Right ) ) + 1;

return T;

Figure 4.44 Insertion into an AvL tree

The last function we will write will perform the double rotation pictured in
Figure 4.47, for which the code is shown in Figure 4.48.

Deletion in AvL trees is somewhat more complicated than insertion. Lazy deletion
is probably the best strategy if deletions are relatively infrequent.
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Figure 4.45 Single Rotation

/* This function can be called only if K2 has a left child */
/* Perform a rotate between a node (K2) and its left child */
/* Update heights, then return new root */

static Position
SingleRotateWithiLeft( Position K2 )

{
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K1->Right = K2;
K2->Height = Max( Height( K2->Left ),
Height( K2->Right ) ) + 1;
K1->Height = Max( Height( Kl1->Left ), K2->Height ) + 1;
return K1; /* New root */
}

Figure 4.46 Routine to perform single rotation

Figure 4.47 Double rotation
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/* This function can be called only if K3 has a left */ °
/* child and K3's left child has a right chﬂd */

/* Do the left-right double rotation */

/* Update’ heights, then return new root */

static Position
DoubleRotateWithLeft( Posi t1 on K3 )

A
/* Rotate between K1 and K2 */ .
K3->Left = SingleRotateWithRight( K3->Left );
/* Rotate between K3 and K2 */-
return SingleRotateWithLeft( K3 );
} " ’

Figure 4.48 Routine to perform double rotation

4.5. Splay Trees

We now describe a relatively simple data structure, known as a splay tree, that
guarantees that any M consecutive tree operations starting from an empty tree take
at most O(M log N) time. Although this guarantee does not preclude the possibility
that any single operation might take O(N ) time, and thus the bound is not as strong
as an O(log N) worst-case bound per operation, the net effect is the same: There
are no bad input sequences. Generally, when a sequence of M operations has total
worst-case running time of O(M F(N)), we say that the amortized running time is
O(F(N))}. Thus, a splay tree has an O(log N) amortized cost per operation. Over a
long sequence of operations, some may take more, some less.

Splay trees are based on the fact that the O(N) worst-case time per operation
for binary search trees is not bad, as long at it occurs relatively infrequently. Any
one access, even if it takes O(N), is still likely to be extremely.fast. The problem
with binary search trees is that it is possible, and not uncommon, for a whole
sequence of bad accesses to take place. The cumulative running time then becomes
noticeable, A search tree data structure with O(N) worst-case time, but a guarantee
of at most O(M log N) for any M consecutive operations, is certainly satisfactory,
because there are no bad sequences.

If any particular operation is allowed to have an O(N) worst-case time bound,
and we still want an O(log N) amortized time bound, then it is clear that whenever
a node is accessed, it must be moved. Otherwise, once we find a deep node, we could
keep performing Finds on it. If the node does not change location, and each access
costs O(N ), then a sequence of M accesses will cost O(M - N).

The basic idea of the splay tree is that after a node is accessed, it is pushed to
the root by a series of AvL tree rotations. Notice that if a node is deep, there are
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many nodes on the path that are also relatively deep, and by restructuring we can
make future accesses cheaper on all these nodes. Thus, if the node is unduly deep,
then we want this restructuring to have the side effect of balancing the tree (to some
extent). Besides giving a good time bound in theory, this method is likely to have
practical utility, because in many applications when a node is accessed, it is likely
to be accessed again in the near future. Studies have shown that this happens much
more often than one would expect. Splay trees also do not require the maintenance
of height or balance information, thus saving space and simplifying the code to some
extent (especially when careful implementations are written).

4.5.1. A Simple Idea (That Does Not Work)

One way of performing the restructuring described above is to perform single
rotations, bottom up. This means that we rotate every node on the access path with
its parent. As an example, consider what happens after an access (a Find) on k; in
the following tree.

The access path is dashed. First, we would perform a single rotation between k; and
its parent, obtaining the following tree.
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Then, we rotate between k; and k3, obtaining the next tree.

These rotations have the effect of pushing k; all the way to the root, so
that future accesses on kq are easy (for a while). Unfortunately, it has pushed an-
other node (k3) almost as deep as k; used to be. An access on that node will then push
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another node deep, and so on. Although this strategy makes future accesses of ki
cheaper, it has not significantly improved the situation for the other nodes on the
(original) access path. It turns out that it is possible to prove that using this strategy,
there is a sequence of M operations requiring (M - N) time, so this idea is not
quite good enough. The simplest way to show this is to consider the tree formed by
inserting keys 1, 2, 3,..., N into an initially empty tree (work this example out).
This gives a tree consisting of only left children. This is not necessarily bad, though,
since the time to build this tree is O(N) total. The bad part is that accessing the node
with key 1 takes N — 1 units of time. After the rotations are complete, an access of
the node with key 2 takes N — 2 units of time. The total for accessing all the keys
in order is ZN 1 i = Q(N?2). After they are accessed, the tree reverts to its original
state, and we can repeat the sequence.

4.5.2. Splaying

The splaying strategy is similar to the rotation idea above, except that we are a little
more selective about how rotations are performed. We will still rotate bottom up
along the access path. Let X be a (nonroot) node on the access path at which we are
rotating. If the parent of X is the root of the tree, we merely rotate X and the root.
This is the last rotation along the access path. Otherwise, X has both a parent (P)
and a grandparent (G), and there are two cases, plus symmetries, to consider. The
first case is the zig-zag case (see Fig. 4.49). Here X is a right child and P is a left
child (or vice versa). If this is the case, we perform a double rotation, exactly like
an AVL double rotation. Otherwise, we have a zig-zig case: X and P are either both
left children or both right children. In that case, we transform the tree on the left of
Figure 4.50 to the tree on the right.

Figure 4.49 Zig-zag
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As an éxample, consider the tree from the last example, with a Find on kq:

The first splay step is at k1, and is clearly a zig-zag, so we perform a standard avL
double rotation using &, k., and k3. The resulting tree follows.

The next splay step at &; is a zig-zig, so we do the zig-zig rotation with ky, k4, and
ks, obtaining the final tree.

Although it is hard to see from small examples, splaying not only moves the
accessed node to the root, but also has the effect of roughly halving the depth of
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most nodes on the access path (some shallow nodes are pushed down at most two
levels).

To see the difference that splaying makes over simple rotation, consider again
the effect of inserting keys 1, 2, 3, ..., N into an initially empty tree. This takes a
total of O(N), as before, and yields the same tree as simple rotations. Figure 4.51
shows the result of splaying at the node with key 1. The difference is that after an
access of the node with key 1, which takes N — 1 units, the access on the node with
key 2 will only take about N/2 units instead of N — 2 units; there are no nodes quite
as deep as before.

An access on the node with key 2 will bring nodes to within N/4 of the root,
and this is repeated until the depth becomes roughly log N (an example with N = 7
is too small to see the effect well). Figures 4.52 to 4.60 show the result of accessing
keys 1 through 9 in a 32-node tree that originally contains only left children. Thus
we do not get the same bad behavior from splay trees that is prevalent in the
simple rotation strategy. (Actually, this turns out to be a very good case. A rather
complicated proof shows that for this example, the N accesses take a total of O(N)
time.)

These figures highlight the fundamental and crucial property of splay trees.
When access paths are long, thus leading to a longer-than-normal search time,
the rotations tend to be good for future operations. When accesses are cheap, the
rotations are not as good and can be bad. The extreme case is the initial tree formed
by the insertions. All the insertions were constant-time operations leading to a bad
initial tree. At that point in time, we had a very bad tree, but we were running ahead
of schedule and had the compensation of less total running time. Then a couple of
really horrible accesses left a nearly balanced tree, but the cost was that we had to
give back some of the time that had been saved. The main theorem, which we will
prove in Chapter 11, is that we never fall behind a pace of O(log N) per operation:
We are always on schedule, even though there are occasionally bad operations.

Figure 4,51 Result of splaying at node 1
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Figure 4.53 Result of splaying previous tree at node 2

We can perform deletion by accessing the node to be deleted. This puts the node
at the root. If it is deleted, we get two subtrees Ty and Ty (left and right). If we find
the largest element in Ty (which is easy), then this element is rotated to the root of
Ty, and T;. will now have a root with no right child. We can finish the deletion by
making Tk the right child.
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Figure 4.57 _Result of splaying previous tree at node 6
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Figure 4.60 Result of splaying previous tree at node 9

The analysis of splay trees is difficult, because it must take into account the
ever-changing structure of the tree. On the other hand, splay trees are much simpler
to program than avL trees, since there are fewer cases to consider and no bal-
ance information to maintain. Some empirical evidence suggests that this translates
into faster code in practice, although the case for this is far from complete. Finally, we
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point out that there are several variations of splay trees that can perform even better
in practice. One variation is completely coded in Chapter 12.

4.6. B-Trees

Although all of the search trees we have seen so far are binary, there is a popular
search tree that is not binary. This tree is known as a B-tree.
A B-tree of order M is a tree with the following structural properties:

® The root is either a leaf or has between 2 and M children.
o All nonleaf nodes (except the root) have between [M/2] and M children.
o All leaves are at the same depth.

All data are stored at the leaves. Contained in each interior node are pointers
Py, Py, ..., Py to the children, and values ki, k2, ..., ka—1, representing the
smallest key found in the subtrees P,, P3, ..., Py, respectively. Of course, some of
these pointers might be NULL, and the corresponding k; would then be undefined.
For every node, all the keys in subtree P; are smaller than the keys in subtree P, and
so on, The leaves contain all the actual data, which are either the keys themselves
or pointers to records containing the keys. We will assume the former to keep our
examples simple. There are various definitions of B-trees that change this structure
in mostly minor ways, but this definition is one of the popular forms. (A popular
alternative structure allows the actual data to be stored in both leaves and internal
nodes, as is done in binary search trees.) We will also insist (for now) that the
number of keys in a (nonroot) leaf is also between [M/2] and M.

The tree in Figure 4.61 is an example of a B-tree of order 4.

|1.4.s.11| 12,13 ||15,18,1%| 21,24 " 25,26 " 31,38 "41,43,46"48,49,50” 59,68 " 72,78 ” 84,88 "91,92,99|

Figure 4.61 B-tree of order 4




A B-tree of order 4 is more popularly known as a 2-3—4 tree, and a B-tree of
order 3 is known as a 2-3 tree. We will describe the operation of B-trees by using
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the special case of 2-3 trees. Our starting point is the 2-3 tree that follows.

8,11, 12 16, 17 I

We have drawn interior nodes (nonleaves) in ellipses, which contain the two
pieces of data for each node. A dash line as a second piece of information in an
interior node indicates that the node has only two children. Leaves are drawn in
boxes, which contain the keys. The keys in the leaves are ordered. To perform a
Find, we start at the root and branch in one of (at most) three directions, depending
on the relation of the key we are looking for to the two (possibly one) values stored

at the node.

To perform an Insert on a previously unseen key, X, we follow the path as
though we were performing a Find. When we get to a leaf node, we have found the
correct place to put X. Thus, to insert a node with key 18, we can just add it to a
leaf without causing any violations of the 2-3 tree properties. The result is shown in

the following figure.

22,23, 31

41, 52

58, 59, 61

8, 11, 12| |16, 17, 18

22,23, 31

41, 52

58, 59, 61
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Unfortunately, since a leaf can hold only two or three keys, this might not
always be possible. If we now try to insert 1 into the tree, we find that the node
where it belongs is already full. Placing our new key into this node would give it a
fourth element, which is not allowed. This can be solved by making two nodes of
two keys each and adjusting the information in the parent.

L8 11, 12 | |16, 17, 18 22, 23,31 + 41,52 | |58, 59, 61

Unfortunately, this idea does not always work, as can be seen by an attempt to
insert 19 into the current tree. If we make two nodes of two keys each, we obtain
the following tree.

1,8 11,12 16, 17 :18,19; 2,23,31|| 41,52 [[58, 59, 61

This tree has an internal node with four children, but we only allow three per
node. The solution is simple. We merely split this node into two nodes with two
children. Of course, this node might be one of three children itself, and thus splitting
it would create a problem for its parent (which would now have four children), but
we can keep on splitting nodes on the way up to the root until we either get to the
root or find a node with only two children. In our case, we can get by with splitting
only the first internal node we see, obtaining the following tree.
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1,8 11, 12 16, 17 18,19 | [22,23,31 41,52 | (58, 59, 61

If we now insert an element with key 28, we create a leaf with four children,
which is split into two leaves of two children:

16 : 22
11:- 18: - 41:58)
1, 8] i1, 12 16, 17] [18, 19 22,23 28L31 41, 52{[58, 59, 61
16:22
11: - 18 : - T ‘ 58 : -
18] 11,12 16, 17] [18, 19 22, 23| |28, 31 41, 52]l58, 59, 61

This creates an internal node with four children, which is then split into two
children. What we have done here is split the root into two nodes. When we do this,

we have a special case, which we finish by creating a new root. This is how (the only
way) a 2-3 tree gains height.

131



132

CHAPTER 4/TREES

1,8 | |11,12 16, 17| (18,19 22, 23| (28,31 41, 5258, 59, 61

Notice also that when a key is inserted, the only changes to internal nodes occur
on the access path. These changes can be made in time proportional to the length of
this path; but be forewarned that there are quite a few cases to handle, and it is easy
to do this wrong.

There are other ways to handle the case where a node becomes overloaded
with children, but the method we have described is probably the simplest. When
attempting to add a fourth key to a leaf, instead of splitting the node into two we
can first attempt to find a sibling with only two keys. For instance, to insert 70 into
the tree above, we could move 58 to the leaf containing 41 and 52, place 70 with 59
and 61, and adjust the entries in the internal nodes. This strategy can also be applied
to internal nodes and tends to keep more nodes full. The cost of this is slightly more
complicated routines, but less space tends to be wasted.

We can perform deletion by finding the key to be deleted and removing it. If
this key was one of only two keys in a node, then its removal leaves only one key.
We can fix this by combining this node with a sibling. If the sibling has three keys,
we can steal one and have both nodes with two keys. If the sibling has only two
keys, we combine the two nodes into a single node with three keys. The parent of
this node now loses a child, so we might have to percolate this strategy all the way
to the top. If the root loses its second child, then the root is also deleted and the tree
becomes one level shallower. As we combine nodes, we must remember to update
the information kept at the internal nodes.

With general B-trees of order M, when a key is inserted, the only difficulty arises
when the node that is to accept the key already has M keys. This key gives the node
M + 1 keys, which we can split into two nodes with [(M + 1)/2] and |[(M + 1)/2)
keys, respectively. As this gives the parent an extra node, we have to check whether
this node can be accepted by the parent and split the parent if it already has M
children. We repeat this until we find a parent with less than M children. If we split
the root, we create a new root with two children.

The depth of a B-tree is at most [loggy N1 At each node on the path, we
perform O(log M ) work to determine whch branch to take (using a binary search),

but an Insert or Delete could require O(M) work to fix up all the information at
the node. The worst-case running time for each of the Insert and Delete operations
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is thus O(M logy N) = O((M/log M)log N), but a Find takes only O(logN). The
best (legal) choice of M for running time considerations has been shown empirically
to be either M = 3 or M = 4; this agrees with the bounds above, which show
that as M gets larger, the insertion and deletion times increase. If we are only
concerned with main memory speed, higher order B-trees, such as 5-9 trees, are not
an advantage.

The real use of B-trees lies in database systems, where the tree is kept on a
physical disk instead of main memory. Accessing a disk is typically several orders of
magnitude slower than any main memory operation. If we use a B-tree of order M,
then the number of disk accesses is O(logy, N). Although each disk access carries the
overhead of O(log M) to determine the direction to branch, the time to perform this
computation is typically much smaller than the time to read a block of memory and
can thus be considered inconsequential (as long as M is chosen reasonably). Even if
updates are performed and O(M ) computing time is required at each node, these too
are generally not significant. The value of M is then chosen to be the largest value
that still allows an interior node to fit into one disk block, and is typically in the
range 32 =< M =< 256. The maximum number of elements that are stored in a leaf
is chosen so that if the leaf is full, it fits in one block: This'means that a record can
always be found in very few disk accesses, since a typlc B-tree w1lI have a depth of
only 2 or 3, and the root (and possibly the first level) can be kept in main ‘memory.

Analysis suggests that a B-tree will be In2 =69 percent full: Better space
utilization can be obtained if, instead of always sphttmg a node when the tree
obtains its (M + 1)th entry, the routine searches for a snbhng that can take the extra
child. The details can be found in the references - e

Summary

We have seen uses of tress.in operating systems, compller demgn, and searchmg
Expression trees are a small example of 2 more general structure known as a parse
tree, which is a central data structure in compiler design. Parse trees are not binary,
but are relativeiy simple extensions of expression trees (although the algorithms to
build them are not quite so simple).

Search trees are of great importance in algorithm design. They support almost
all the useful operations, and the logarithmic average cost is very small. Nonrecursive
implementations of search trees are somewhat faster, but the recursive versions are
sleeker, more elegant, and easier to understand and debug. The problem with search
trees is that their performance depends heavily on the input being random. If this is
not the case, the running time increases significantly, to the point where search trees
become expensive linked lists.

We saw several ways to deal with this problem. avL trees work by insisting that
all nodes’ left and right subtrees differ in heights by at most one. This ensures that
the tree cannot get too deep. The operations that do not change the tree, as inser-
tion does, can all use the standard binary search tree code. Operations that change the
trec must restore the tree. This can be somewhat complicated, especially in the case
of deletion. We showed how to restore the tree after insertions in O(log N) time.

133



134

CHAPTER 4/TREES

We also examined the splay tree. Nodes in splay trees can get arbitrarily deep,
but after every access the tree is adjusted in a somewhat mysterious manner. The
net effect is that any sequence of M operations takes O(M log N ) time, which is the
same as a balanced tree would take.

B-trees are balanced M-way (as opposed to 2-way or binary) trees, which are
well suited for disks; a special case is the 2-3 tree, which is another common method
of implementing balanced search trees.

In practice, the running time of all the balanced tree schemes is worse (by a
constant factor) than the simple binary search tree, but this is generally acceptable in
view of the protection being given against easily obtained worst-case input. Chapter
12 discusses some additional search tree data structures and provides detailed
implementations.

A final note: By inserting elements into a search tree and then performing an
inorder traversal, we obtain the elements in sorted order., This gives an O(N log N)
algorithm to sort, which is a worst-case bound if any sophisticated search tree is
used. We shall see better ways in Chapter 6, but none that have a lower time bound.

Exercises

Questions 4.1 to 4.3 refer to the tree in Figure 4.62.
4.1 For the tree in Figure 4.62:

a. Which node is the root?

b. Which nodes are leaves?
4.2 For each node in the tree of Figure 4.62:

a. Name the parent node.

b. List the children.

c. List the siblings,

d. Compute the depth.

e. Compute the height.
4.3 What is the depth of the tree in Figure 4.62?

4.4 Show that in a binary tree of N nodes, there are N + 1 NULL pointers
representing children,

4.5 S};Iow that the maximum number of nodes in a binary tree of height H is
2H+1 _q,

4.6 A full node is a node with two children. Prove that the number of full nodes
plus one is equal to the number of leaves in a nonempty binary tree.

4.7 Suppose a binary tree has leaves Iy, b,..., Iy at depths dy, ds,..., du,
respectively. Prove that >M 274 < | and determine when the equallty is
true.
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Figure 4.62

4.8 Give the prefix, infix, and postfix expressions corresponding to the tree in Fig-
ure 4.6 3.

4.9 a. Show the result of inserting 3, 1, 4, 6, 9, 2, 5, 7 into an initially empty
binary search tree.
b. Show the result of deleting the root.

4.10 Write routines to implement the basic binary search tree operations.

4.11 Binary search trees can be implemented with cursors, using a strategy similar to
a cursor linked list implementation. Write the basic binary search tree routines
using a cursor implementation.

4.12 Suppose you want to perform an experiment to verify the problems that can

be caused by random Insert/Delete pairs. Here is a strategy that is not perfectly
random, but close enough. You build a tree with N elements by inserting N

Figure 4.63 Tree for Exercise 4.8
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4.13

4.14

elements chosen at random from the range 1 to M = aN. You then perform
N2 pairs of insertions followed by deletions. Assume the existence of a routine,
RandomlInteger(A, B), which returns a uniform random integer between A and
B inclusive.

a. Explain how to generate a random integer between 1 and M that is not
already in the tree (so a random insert can be performed). In terms of N
and a, what is the running time of this operation?

b. Explain how to generate a random integer between 1 and M that is already
in the tree (so a random delete can be performed). What is the running
time of this operation?

c. What is a good choice of a? Why?

Write a program to evaluate empirically the following strategies for deleting
nodes with two children:

a. Replace with the largest node, X, in T; and recursively delete X.

b. Alternately replace with the largest node in Ty and the smallest node in Tg,
and recursively delete the appropriate node.

¢. Replace with either the largest node in T; or the smallest node in Ty
(recursively deleting the appropriate node), making the choice randomly.

Which strategy seems to give the most balance? Which takes the least CPU
time to process the entire sequence? '

** Prove that the depth of a random binary search tree (depth of the deepest
node) is O(log N}, on average.

4.15*a. Give a precise expression for the minimum number of nodes in an AvL tree

4.16
4.17

4.18
4.19
4.20
4.21

4.22

4.23

4.24

of height H.
b. What is the minimum number of nodes in an avL tree of height 15?
Show the result of inserting 2, 1,4, 5, 9, 3, 6, 7 into an initially empty avL tree.

* Keys 1, 2,..., 28 — 1 are inserted in order into an initially empty AvL tree.
Prove that the resulting tree is perfectly balanced.

Write the remaining procedures to implement ave single and double rotations.
Write a nonrecursive function to insert into an AVL tree.
* How can you implement (nonlazy) deletion in AvL trees?

a. How many bits are required per node to store the height of a node in an
N-node avL tree?

b. What is the smallest avL tree that overflows an 8-bit height counter?

Write the functions to perform the double rotation without the inefficiency of
doing two single rotations.

Show the result of accessing the keys 3, 9, 1, 5 in order in the splay tree in
Figure 4.64.

Show the result of deleting the element with key 6 in the resulting splay tree
for the previous exercise.
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Figure 4.64

4.25

4.26

Nodes 1 through N = 1024 form a splay tree of left children.
a. What is the internal path length of the tree (exactly)?

*b. Calculate the internal path length after each of Find(1), Find(2), Find(3),

Find(4), Find(5), Find(6).

*c. If the sequence of successive Finds is continued, when is the internal path

length minimized?

a. Show that if all nodes in a splay tree are accessed in sequential order, the
resulting tree consists of a chain of left children.

**b, Show that if all nodes in a splay tree are accessed in sequential order, then

the total access time is O(N), regardless of the initial tree.

4.27 Write a program to perform random operations on splay trees. Count the total

4.28

4.29

4.30

number of rotations performed over the sequence. How does the running time
compare to AVL trees and unbalanced binary search trees?

Write efficient functions that take only a pointer to the root of a binary tree,
T, and compute:

a. The number of nodes in T.

b. The number of leaves in T.

c. The number of full nodes in T.

What is the running time of your routines?

Write a function to generate an N-node random binary search tree with distinct
keys 1 through N. What is the running time of your routine?

Write a function to generate the avL tree of height H with fewest nodes. What
is the running time of your function?

4.31 Write a function to generate a perfectly balanced binary search tree of height

H with keys 1 through 2H*! — 1. What is the running time of your function?

137



138

CHAPTER 4/TREES

4.32

4.33

4.34

4.35

4.36

Write a function that takes as input a binary search tree, T, and two keys
k1 and kj, which are ordered so that k3 =< k3, and prints all elements X in
the tree such that ky = Key(X) =< kz. Do not assume any information about
the type of keys except that they can be ordered (consistently). Your program
should run in O(K + log N) average time, where K is the number of keys
printed. Bound the running time of your algorithm.

The larger binary trees in this chapter were generated automatically by a
program. This was done by assigning an (x, y) coordinate to each tree node,
drawing a circle around each coordinate (this is hard to see in some pictures),
and connecting each node to its parent. Assume you have a binary search tree
stored in memory (perhaps generated by one of the routines above) and that
each node has two extra fields to store the coordinates.

a. The x coordinate can be computed by assigning the inorder traversal
number. Write a routine to do this for each node in the tree.

b. The y coordinate can be computed by using the negative of the depth of
the node. Write a routine to do this for each node in the tree.

c. In terms of some imaginary unit, what will the dimensions of the picture be?
How can you adjust the units so that the tree is always roughly two-thirds
as high as it is wide?

d. Prove that using this system no lines cross, and that for ény node, X, all
elements in X’s left subtree appear to the left of X and all elements in X’s
right subtree appear to the right of X.

Write a general-purpose tree-drawing program that will convert a tree into the
following graph-assembler instructions:

a. Circle(X,Y)
b. ‘DrawlLine(i, j)

The first instruction draws a circle at (X,Y), and the second instruction
connects the ith circle to the jth circle (circles are numbered in the order
drawn). You should either make this a program and define some sort of input
language or make this a function that can be called from any program. What
is the running time of your routine?

Write a routine to list out the nodes of a binary tree in level-order. List the
root, then nodes at depth 1, followed by nodes at depth 2, and so on. You
must do this in linear time, Prove your time bound.

a. Show the result of inserting the following keys into an initially empty 2-3
tree: 3,1,4,5,9,2,6,8,7,0.

b. Show the result of deletmg 0 and then 9 from the 2-3 tree created in part

(a).

4.37*a. Write a routine to perform insertion into a B-tree.

*b. Write a routine to perform deletion from a B-tree. When a key is deleted,
is it necessary to update information in the internal nodes?



4.38

4.39

4.40
4.41

4.42

4.43

)

EXERCISES

*¢. Modify your insertion routine so that if an attempt is made to add into a
node that already has M entries, a search is performed for a sibling with
less than M children before the node is split.

A B*-tree of order M is a B-tree in which each interior node has between 2M/3
and M children. Describe a method to perform insertion into a B*-tree.

Show how the tree in Figure 4.65 is represented using a child/sibling pointer
implementation.

Write a procedure to traverse a tree stored with child/sibling links.

Two binary trees are similar if they are both empty or both nonempty and
have similar left and right subtrees. Write a function to decide whether two
binary trees are similar. What is the running time of your program?

Two trees, Ty and T;, are isomorphic if Ti can be transformed into T by
swapping left and right children of (some of the) nodes in T;. For instance,
the. two trees in Figure 4.66 are isomorphic because they are the same if the
children of A, B, and G, but not the other nodes, are swapped.

a. Give a polynomial time algorithm to decide if two trees are isomorphic.
*b. What is the running time of your program (there is a linear solution)?

*a, Show that via AvL single rotations, any binary search tree Ti can be
transformed into another search tree T, (with the same keys).

*b. Give an algorithm to perform this transformation using O(N log N) rota-
tions on average.

*c. Show that this transformation can be done with O(N) rotations, worst-
case,

Figure 4.65 Tree for Exercise 4.39
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4.44 Suppose we want to add the operation FindKth to our repertoire. The operation
FindKth(T, i) returns the element in tree T with ith smallest key. Assume all
elements have distinct keys. Explain how to modify the binary search tree to
support this operation in O(log N) average time, without sacrificing the time
bounds of any other operation.

4.45 Write routines to perform inorder traversal, insertion and deletion into a
threaded binary tree. What is the advantage of using threaded trees?

4.46 A binary search tree presupposes that searching is based on only one key per
record. Suppose we would like to be able to perform searching based on either
of two keys, Key, or Key,.

a. One method is to build two separate binary search trees. How many extra
pointers does this require?

b. An alternative method is a 2-d tree. A 2-d tree is similar to a binary
search tree, except that branching at even levels is done with respect to
Key,, and branching at odd levels is done with Key,. Figure 4.67 shows a
2-d tree, with the first and last names as keys, for post—WWII presidents.
The presidents’ names were inserted chronologically (Truman, Eisenhower,
Kennedy, Johnson, Nixon, Ford, Carter, Reagan, Bush, Clinton). Write a
routine to perform insertion into a 2-d tree.

c. Write an efficient procedure that prints all records in the tree that si-
multaneously satisfy the constraints Lowy =< Key,; =< High, and Low, <
Key, = High,.

d. Show how to extend the 2-d tree to handle more than two search keys. The
resulting strategy is known as a k-d tree.

Figure 4,67 A 2-d tree

Dwight Eisenhower
George Bush Gerald Ford
Bill Clinton

John Kennedy
Lyndon Johnson Richard Nixon
" Ronald Reagan
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‘ _ - CHAPTER 5

Priority Queues (Heaps)

Although jobs sent to a printer are generally placed on a queue, this might not always

be the best thing to do. For instance, one job might be particularly important, so it
might be desirable to allow that job to be run as soon as the printer is available.
Conversely, if, when the printer becomes available, there are several 1-page jobs and
one 100-page job, it might be reasonable to make the long job go last, even if it is
not the last job submitted. (Unfortunately, most systems do not do this, which can
be particularly annoying at times.)

Similarly, in a multiuser environment, the operating system scheduler must
decide which of several processes to run. Generally a process is allowed to run only
for a fixed period of time. One algorithm uses a queue. Jobs are initially placed at
the end of the queue. The scheduler will repeatedly take the first job on the queue,
run it until either it finishes or its time limit is up, and place it at the end of the queue
if it does not finish. This strategy is generally not appropriate, because very short
jobs will seem to take a long time because of the wait involved to run. Generally,
it is important that short jobs finish as fast as possible, so these jobs should have
precedence over jobs that have already been running. Furthermore, some jobs that
are not short are still very important and should also have precedence.

This particular application seems to require a special kind of queue, known as
a priority queue. In this chapter, we will discuss

o Efficient implementation of the priority queue ADT.
o Uses of priority queues.
¢ Advanced implementations of priority queues.

The data structures we will see are among the most elegant in computer science.

5.1. Model

A priority qucleue is a data structure that allows at least the following two opera-
tions: Insert, which does the obvious thing; and DeleteMin, which finds, returrs,
and removes the minimum element in the priority queué. The Insert operation
is the equivalent of Enqueue, and DeleteMin is the priority queue equivalent of
the queue’s Deguene operation. The DeleteMin function also alters its input. Current
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DeleteMin (H) Insert(H)

- Priority Queue H

Figure 5.1 Basic model of a priority queue

thinking in the software engineering community suggests that this is no longer a
good idea. However, we will continue to use this function for historical reasons;
many programmers expect DeleteMin to operate this way.

As with most data structures, it is sometimes possible to add other operations,
but these are extensions and not part of the basic model depicted in Figure 35.1.

Priority queues have many applications besides operating systems. In Chapter
6, we will see how priority queues are used for external sorting. Priority queues
are also important in the implementation of greedy algorithms, which operate by
repeatedly finding a minimum; we will see specific examples in Chapters 9 and 10.
In this chapter we will see a use of priority queues in discrete event simulation.

5.2. Simple Implementations

There are several obvious ways to implement a priority queue. We could use a simple
linked list, performing insertions at the front in O(1) and traversing the list, which
requires O(N) time, to delete the minimum. Alternatively, we could insist that the
list be kept always sorted; this makes insertions expensive (O(N)) and DeleteMins
cheap (O(1)). The former is probably the better idea of the two, based on the fact
that there are never more DeleteMins than insertions.

Another way of implementing priority queues would be to use a binary search
tree. This gives an O(log N} average running time for both operations. This is true
in spite of the fact that although the insertions are random, the deletions are not.
Recall that the only element we ever delete is the minimum. Repeatedly removing a
node that is in the left subtree would seem to hurt the balance of the tree by making
the right subtree heavy. However, the right subtree is random. In the worst case,
where the DeleteMins have depleted the left subtree, the right subtree would have
at most twice as many elements as it should. This adds only a small constant to
its expected depth. Notice that the bound can be made into a worst-case bound by
using a balanced tree; this protects one against bad insertion sequences.

Using a search tree could be overkill because it supports a host of operations
that are not required. The basic data structure we will use will not require pointers
and will support both operations in O(log N ) worst-case time. Insertion will actually
take constant time on average, and our implementation will allow building a priority
queue of N items in linear time, if no deletions intervene. We will then discuss how
to implement priority queues to support efficient merging. This additional operation
seems to complicate matters a bit and apparently requires the use of pointers.
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5.3. Binary Heap

The implementation we will use is known as a binary heap. Its use is so common for
priority queue implementations that when the word beap is used without a qualifier,
it is generally assumed to be referring to this implementation of the data structure. In
this section, we will refer to binary heaps merely as beaps. Like binary search trees,

" heaps have two properties, namely, a structure property and a heap order property.
As with avL trees, an operation on a heap can destroy one of the properties, so a
heap operation must not terminate until all heap properties are in order. This turns
out to be simple to do.

5.3.1. Structure Property

A heap is a binary tree that is completely filled, with the possible exception of the
bottom level, which is filled from left to right. Such a tree is known as a complete
binary tree. Figure 5.2 shows an example.

It is easy to show that a complete binary tree of height » has between 2* and
— 1 nodes. This implies that the height of a complete binary tree is [log N,
which is clearly O(log N).

An important observation is that because a complete binary tree is so regular,
it can be represented in an array and no pointers are necessary. The array in Figure
5.3 corresponds to the heap in Figure 5.2.

For any element in array position 7, the left child is in position 2, the right
child is in the cell after the left child (2i + 1), and the parent is in position |i/2]. Thus
not only are pointers not required, but the operations required to traverse the tree are

2h+1

Figure 5.2 A complete binary tree

Figure 5.3 Array implementation of complete binary tree

AIB|C|D|E|{F|G|HI|I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13
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extremely simple and likely to be very fast on most computers. The only problem
with this implementation is that an estimate of the maximum heap size is required
in advance, but typically this is not a problem. In Figure 5.3, the limit on the heap
size is 13 elements. The array has a position 0; more on this later.

A heap data structure will, then, consist of an array (of whatever type the key is)
and an integer representing the maximum and current heap sizes. Figure 5.4 shows
a typical priority queue declaration. Notice the similarity to the stack declaration in
Figure 3.46. Figure 5.4a creates an empty heap. Line 11 will be explained later.

Throughout this chapter, we shall draw the heaps as trees, with the implication
that an actual implementation will use simple arrays.

5.3.2. Heap Order Property

The property that allows operations to be performed quickly is the heap order
property. Since we want to be able to find the minimum quickly, it makes sense that
the smallest element should be at the root. If we consider that any subtree should
also be a heap, then any node should be smaller than all of its descendants.
Applying this logic, we arrive at the heap order property. In a heap, for every
node X, the key in the parent of X is smaller than (or equal to) the key in X, with

Figure 5.4 Declaration for priority queue

#ifndef _BinHeap_H

struct HeapStruct;
typedef struct HeapStruct *PriorityQueue;

PriorityQueue Initialize( int MaxElements );
void Destroy( PriorityQueue H );

void MakeEmpty( PriorityQueue H );

void Insert( ElementType X, PriorityQueue H );
ElementType DeleteMin( PriorityQueue H );
ElementType FindMin( PriorityQueue H );

-int IsEmpty( PriorityQueue H );

int IsFull( PriorityQueue H );

#endif

/* Place in implementation file */
struct HeapStruct
{

int Capacity;

int Size;

ElementType *Elements;

S
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Figure 5.4 Declaration for priority queue (continued)

PriorityQueue
Initialize( int MaxElements )
{ s
PriorityQueue H;
/* 1%/ if( MaxElements < MinPQSize )
/* 2%/ Error( "Priority queue size is too small" );
/* 3%/ H = malloc( sizeof( struct HeapStruct ) );
/* 4%/ if( H == NULL )
/% 5%/ FatalError( "Out of space! 11" );
/* Allocate the array plus one extra for sentinel */
/% 6%/ H->Elements = malloc{ ( MaxElements + 1 )
; . * sizeof( ElementType ) );
[* 7%/ if( H->Elements == NULL ) s '
/* 8%/ FatalError( "Out of space!!!" );
/* 9%/ H->Capacity = MaxElements;
/*10%/ H->Size = 0; -
/*11%/ H->Elements[ O ] = MinData;
/*¥12%/ return H;
}

the exception of the root (which has no parent).* In Figure 5.5 the tree on the left is
a heap, but the tree on the right is not (the dashed line shows the violation of heap
order). As usual, we will assume that the keys are integers, although they could be
arbitrarily complex.

Figure 5.5 Two complete trees (only. the left tree is a heap)

* Analogously, we can declare a (max) heap, which enables us to efficiently find and remove the maximum
element, by changing the heap order property. Thus, a priority queue can be used to find either a
minimum or a maximum, but this needs to be decided ahead of time.
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By the heap order property, the minimum element can always be found at the
root. Thus, we get the extra operation, FindMin, in constant time. :

5.3.3. Basic Heap Operations

It is easy (both conceptually and practically) to perform the two required operations.
All the work involves ensuring that the heap order property is maintained.

Insert

To insert an element X into the heap, we create a hole in the next available location,
since otherwise the tree will not be complete. If X can be placed in the hole without
violating heap order, then we do so and are done. Otherwise we slide the element
that is in.the hole’s parent node into the hole, thus bubbling the hole up toward the
root. We continue this process until X can be placed in the hole. Figure 5.6 shows
that to insert 14, we create a hole in the next available heap location. Inserting 14
in the hole would violate the heap order property, so 31 is slid down into the hole.
This strategy is continued in Figure 5.7 until the correct location for 14 is found.

Figure 5.6 Attempt to insert 14: creating the hole,
and bubbling the hole up

Figure 5.7 The remaining two steps to insert 14
in previous heap
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/* H->Element[ 0 ] is a sentinel */

void
Insert( ElementType X, PriorityQueue H )
{

int 1;

if( IsFul1C H ) )

{
Error( "Priority queue is full" );
return;

}

for( i = ++H->Size; H~->Elements[ i / 2 ] > X; 1 /=2)
H->Elements[ i ] = H->Elements[ i / 2 ];
H->Elements{ i 1 = X;
}

Figure 5.8 Procedure to insert into a binary key

This general strategy is known as a percolate up; the new element is percolated
up the heap until the correct location is found. Insertion is easily implemented with
the code shown in Figure 5.8.

We could have implemented the percolation in the Insert routine by perform-
ing repeated swaps until the correct order was established, but a swap requires
three assignment statements. If an element is percolated up d levels, the number
of assignments performed by the swaps would be 3d. Our method uses d + 1
assignments.

If the element to be inserted is the new minimum, it will be pushed all the way
to the top. At some point, i will be 1 and we will want to break out of the while
loop. We could do this with an explicit test, but we have chosen to put a very small
value in position 0 in order to make the while loop terminate. This value must be
guaranteed to be smaller than (or equal to) any element in the heap; it is known as
a sentinel. This idea is similar to the use of header nodes in linked lists. By adding a
dummy piece of information, we avoid a test that is executed once per loop iteration,
thus saving some time.

The time to do the insertion could be as much as O(log N), if the element to be
inserted is the new minimum and is percolated all the way to the root. On average,
the percolation terminates early; it has been shown that 2.607 comparisons are

required on average to perform an insert, so the average Insert moves an element up
1.607 levels.

DeleteMin

DeleteMins are handled in a similar manner as insertions. Finding the minimum is
easy; the hard part is removing it. When the minimum is removed, a hole is created
at the root. Since the heap now becomes one smaller, it follows that the last element
X in the heap must move somewhere in the heap. If X can be placed in the hole,
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then we are done. This is unlikely, so we slide the smaller of the hole’s children into
the hole, thus pushing the hole down one level. We repeat this step until X can be
placed in the hole. Thus, our action is to place X in its correct spot along a path
from the root containing minimum children.

In Figure 5.9 the left figure shows a heap prior to the DeleteMin. After 13 is
removed, we must now try to place 31 in the heap. The value 31 cannot be placed
in the hole, because this would violate heap order. Thus, we place the smaller child
(14) in the hole, sliding the hole down one level (see Fig. 5.10). We repeat this
again, placing 19 into the hole and creating a new hole one level deeper. We then place

Figure 5.9 Creation of the hole at the root

Figure 5.10 Next two steps in DeleteMin

) (29 G2 = 32)

Figure 5.11 Last two steps in DeleteMin
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26 in the hole and create a new hole on the bottom level. Finally, we are able to
place 31 in the hole (Fig. 5.11). This general strategy is known as a percolate down.
We use the same technique as in the Insert routine to avoid the use of swaps in this
routine.

A frequent implementation error in heaps occurs when there are an even number
of elements in the heap, and the one node that has only one child is encountered.
You must make sure not to assume that there are always two children, so this usually
involves an extra test. In the code depicted in Figure 5.12, we’ve done this test at
line 8. One extremely tricky solution is always to ensure that your algorithm thinks
every node has two children. Do this by placing a sentinel, of value higher than any
in the heap, at the spot after the heap ends, at the start of each percolate down
when the heap size is even. You should think very carefully before attempting this,
and you must put in a prominent comment if you do use this technique. Although this

Figure 5.12 Function to perform DeleteMin
in a binary heap

ElementType
DeleteMin( PriorityQueue H )
{
int i, Child;
ElementType MinElement, LastElement;
/* 1*/ if( IsEmpty( H ) )
{
/* 2%/ Error( "Priority queue is empty" );
/¥ 3%/ return H->Elements[ 0 ];
}
/* 4%/ MinElement = H->Elements{ 1 ];
/% 5%/ LastElement = H->Elements[ H->Size-- ];
/* 6%/ for(i=1; i * 2 <= H->Size; i = Child )
{
/* Find smaller child */
/* 7%/ Child = 1 * 2;
/% 8%/ if( Child != H->Size && H->Elements[ Child + 1 ]
/* 9%/ < H->Elements[ Child ] )
/*10%/ Child++;
/* Percolate one level */
/*11*/ if( LastElement > H->Elements[ Child ] )
/¥12*%/ H->Elements[ i ] = H->Elements[ Child ];
else
/*13%/ break;
}
/*¥14%/ H->Elements[ i ] = LastElement;
/*15%/ return MinElement;
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eliminates the need to test for the presence of a right child, you cannot eliminate the
requirement that you test when you reach the bottom, because this would require a
sentinel for every leaf.

The worst-case running time for this operation is O(log N). On average, the
element that is placed at the root is percolated almost to the bottom of the heap
(which is the level it came from), so the average running time is O(log N ).

5.3.4. Other Heap Operations

Notice that although finding the minimum can be performed in constant time, a heap
designed to find the minimum element (also known as a (min)heap) is of no help
whatsoever in finding the maximum element. In fact, a heap has very little ordering
information, so there is no way to find any particular key without a linear scan
through the entire heap. To see this, consider the large heap structure (the elements
are not shown) in Figure 5.13, where we see that the only information known about
the maximum element is that it is at one of the leaves. Half the elements, though, are
contained in leaves, so this is practically useless information. For this reason, if it is
important to know where elements are, some other data structure, such as a hash
table, must be used in addition to the heap. (Recall that the model does not allow
looking inside the heap.)

If we assume that the position of every element is known by some other method,
then several other operations become cheap. The three operations below all run in
logarithmic worst-case time. :

DecreaseKey

The DecreaseKey(P, A, H) operation lowers the value of the key at position P by
a positive amount A. Since this might violate the heap order, it must be fixed by
a percolate up. This operation could be useful to system administrators: They can
make their programs run with highest priority.

Figure 5.13 A very large complete binary tree
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IncreaseKey

The IncreaseKey(P, A, H) operation increases the value of the key at position P
by a positive amount A. This is done with a percolate down. Many schedulers
automatically drop the priority of a process that is consuming excessive CPU time.

Delete

The Delete(P, H) operation removes the node at position P from the heap. This is
done by first performing DecreaseKey(P, , H) and then performing DeleteMin(H).
When a process is terminated by a user (instead of finishing normally), it must be
removed from the priority queue.

BuildHeap

The BuildHeap(H ) operation takes as input N keys and places them into an empty
heap. Obviously, this can be done with N successive Inserts. Since each Insert will
take O(1) average and O(log N) worst-case time, the total running time of this
algorithm would be O(N) average but O(N log N ) worst-case. Since this is a special
instruction and there are no other operations intervening, and we already know that
the instruction can be performed in linear average time, it is reasonable to expect
that with reasonable care a linear time bound can be guaranteed.

The general algorithm is to place the N keys into the tree in any order,
maintaining the structure property. Then, if PercolateDown(i) percolates down
from node i, perform the algorithm in Figure 5.14 to create a heap-ordered tree.

The first tree in Figure 5.15 is the unordered tree. The seven remaining trees
in Figures 5.15 through 5.18 show the result of each of the seven PercolateDowns.
Each dashed line corresponds to two comparisons: one to find the smaller child and
one to compare the smaller child with the node. Notice that there are only 10 dashed

Figure 5.14 Sketch of BuildHeap

forCi =N/ 2;15>0; i--)
PercolateDown( i );

Figure 5.15 Left: initial heap; right: after PercolateDown(7)
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Figure 5.16 Left: after PercolateDown(6);
right: after PercolateDown(5)

Figure 5.17 Left: after PercoiateDown(4)‘;
right: after PercolateDown(3)

Figure 5.18 Left: after PercolateDown(2); right: after PercolateDown(1)
lines in the entire algorithm (there could have been an 11th—where?) corresponding
to 20 comparisons.

To bound the running time of BuildHeap, we must bound the number of dashed
lines. This can be done by computing the sum of the heights of all the nodes in the
heap, which is the maximum number of dashed lines. What we would like to show
is that this sum is O(N).

THEOREM 5.1.

For the perfect binary tree of height b containing 2"*! — 1 nodes, the sum of
the heights of the nodes is 2"*1 — 1 — (b + 1).
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PROOF: X )

It is easy to see that this tree consists of 1 node at height b, 2 nodes at l_1e|ght
b — 1, 22 nodes at height b — 2, and in general 2' nodes at height b — 1. The
sum of the heights of all the nodes is then

b
S =>2(h-i)
i=0
—bh+2b—1)+4(h—2)+8(h—3) +16(h —4) +---+271(1) (5.1)
Multiplying by 2 gives the equation
28 =2h+4(h—1)+8(b—2)+16(h—3)+---+2"(1) (5.2)

We subtract these two equations and obtain Equation (5.3). We find that certain
terms almost cancel. For instance, we have 2h — 2(b — 1) = 2, 4(h — 1) —

4(h — 2) = 4, and so on. The last term in Equation (5.2), 2%, does not appear
in Equation (5.1); thus, it appears in Equation (5.3). The first term in Equation
(5.1), b, does not appear in Equation (5.2); thus, —b appears in Equation (5.3).
We obtain

S=—-h+2+4+8+--4+21 42 =2 1) —(h+1) (5.3)
which proves the theorem.

A completé tree is not a perfect binary tree, but the result we have obtained is
an upper bound on the the sum of the heights of the nodes in a complete tree. Since
a complete tree has between 2? and 2#*! nodes, this theorem implies that this sum
is O(N), where N is the number of nodes.

Although the result we have obtained is sufficient to show that BuildHeap is
linear, the bound on the sum of the heights is not as strong as possible. For a
complete tree with N = 2” nodes, the bound we have obtained is roughly 2N. The
sum of the heights can be shown by induction to be N — b(N), where b(N) is the
number of 1s in the binary representation of N.

5.4. Applications of Priority Queues

We have already mentioned how priority queues are used in operating systems
design. In Chapter 9, we will see how priority queues are used to implement several
graph algorithms efficiently. Here we will show how to use priority queues to obtain
solutions to two problems.

5.4.1. The Selection Problem

The first problem we will examine is the selection problem from Chapter 1. Recall
that the input is a list of N elements, which can be totally ordered, and an integer k.
The selection problem is to find the kth largest element.
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Two algorithms were given in Chapter 1, but neither is very efficient. The first
algorithm, which we shall call algorithm 1A, is to read the elements into an array and
sort them, returning the appropriate element. Assuming a simple sorting algorithm,
the running time is O(N2). The alternative algorithm, 1B, is to read k elements into
an array and sort them. The smallest of these is in the kth position. We process the
remaining elements one by one. As an element arrives, it is compared with the kth
element in the array. If it is larger, then the kth element is removed, and the new
element is placed in the correct place among the remaining k — 1 elements. When the
algorithm ends, the element in the kth position is the answer. The running time is
O(N - k) (why?). If k = [N/2), then both algorithms are O(N?). Notice that for any
k, we can solve the symmetric problem of finding the (N — k + 1)th smallest element,
so k = [N/2] s really the hardest case for these algorithms. This also happens to be
the most interesting case, since this value of k is known as the median.

We give two algorithms here, both of which run in O(N log N) in the extreme
case of k = [N/2], which is a distinct improvement. '

Algorithm 5A

For simplicity, we assume that we are interested in finding the kth smallest element.
The algorithm is simple. We read the N elements into an array. We then apply the
BuildHeap algorithm to this array. Finally, we perform k DeleteMin operations.
The last element extracted from the heap is our answer. It should be clear that by
changing the heap order property, we could solve the original problem of finding
the kth largest element.

The correctness of the algorithm should be clear. The worst-case timing is
O(N) to construct the heap, if BuildHeap is used, and O(log N) for each DeleteMin.
Since there are k DeleteMins, we obtain a total running time of O(N + klogN). If
k = O(N/log N), then the running time is dominated by the BuildHeap operation
and is O(N). For larger values of k, the running time is O(klog N ). If k = [N/2],
then the running time is @(N log N). :

Notice that if we run this program for k¢ = N and record the values as they leave
the heap, we will have essentially sorted the input file in O(N log N ) time. In Chapter
6, we will refine this idea to obtain a fast sorting algorithm known as heapsort.

Algorithm 5B

For the second algorithm, we return to the original problem and find the kth largest
element. We use the idea from algorithm 1B. At any point in time we will maintain
a set § of the k largest elements. After the first k£ elements are read, when a new
element is read it is compared with the kth largest element, which we denote by
Sk- Notice that S, is the smallest element in S. If the new element is larger, then it
replaces Sp in S. S will then have a new smallest element, which may or may not be
the newly added element. At the end of the input, we find the smallest element in S
and return it as the answer.

This is essentially the same algorithm described in Chapter 1. Here, however,
we will use a heap to implement S. The first & elements are placed into the
heap in total time O(k) with a call to BuildHeap. The time to process each of
the remaining elements is O(1), to test if the element goes into S, plus O(logk),
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to delete S, and insert the new element if this is necessary. Thus, the total time is
O(k+ (N —k)logk) = O(N log k). This algorithm also gives a bound of O(N log N)
for finding the median. :

In Chapter 6, we will see how to solve this problem in O(N) average time.
In Chapter 10, we will see an elegant, albeit impractical, algorithm to solve this
problem in O(N) worst-case time.

5.4.2. Event Simulation

In Section 3.4.3, we described an important queuing problem. Recall that we have
a system, such as a bank, where customers arrive and wait on a line until one
of k tellers is available. Customer arrival is governed by a probability distribution
function, as is the service time (the amount of time to be served once a teller is
available). We are interested in statistics such as how long on average a customer
has to wait or how long the line might be. '

With certain probability distributions and values of k, these answers can be
computed exactly. However, as k gets larger, the analysis becomes considerably
more difficult, so it is appealing to use a computer to simulate the operation of the
bank. In this way, the bank officers can determine how many tellers are needed to
ensure reasonably smooth service.

A simulation consists of processing events. The two events here are (a) a
customer arriving and (b) a customer departing, thus freeing up a teller.

We can use the probability functions to generate an input stream consisting of
ordered pairs of arrival time and service time for each customer, sorted by arrival
time. We do not need to use the exact time of day. Rather, we can use a quantum
unit, which we will refer to as a tick. ' '

One way to do this simulation is to start a simulation clock at zero ticks. We
then advance the clock one tick at a time, checking to see if there is an event. If there
is, then we process the event(s) and compile statistics. When there are no customers
left in the input stream and all the tellers are free, then the simulation is over.

The problem with this simulation strategy is that its running time does not
depend on the number of customers or events (there are two events per customer),
but instead depends on the number of ticks, which is not really part of the input.
To see why this is important, suppose we changed the clock units to milliticks and
multiplied all the times in the input by 1,000. The result would be that the simulation
would take 1,000 times longer!

The key to avoiding this problem is to advance the clock to the next event
time at each stage. This is conceptually easy to do. At any point, the next event
that can occur is either (a) the next customer in the input file arrives or (b) one
of the customers at a teller leaves. Since all the times when the events will happen
are available, we just need to find the event that happens nearest in the future and
process that event.

If the event is a departure, processing includes gathering statistics for the
departing customer and checking the line (queue) to see whether there is another
customer waiting. If so, we add that customer, process whatever statistics are
required, compute the time when that customer will leave, and add that departure
to the set of events waiting to happen.
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If the event is an arrival, we check for an available teller. If there is none,
we place the arrival on the line (queue); otherwise we give the customer a teller,
compute the customer’s departure time, and add the departure to the set of events
waiting to happen.

The waiting line for customers can be implemented as a queue. Since we need
to find the event nearest in the future, it is appropriate that the set of departures
waiting to happen be organized in a priority queue. The next event is thus the next
arrival or next departure (whichever is sooner); both are easily available.

It is then straightforward, although possibly time-consuming, to write the
simulation routines. If there are C customers (and thus 2C events) and k tellers, then
the running time of the simulation would be O(C log(k + 1))* because computing
and processing each event takes O(log H ), where H = k + 1 is the size of the heap.

5.5. d-Heaps

Binary heaps are so simple that they are almost always used when priority queues
are needed. A simple generalization is a d-beap, which is exactly like a binary heap
except that all nodes have d children (thus, a binary heap is a 2-heap).

Figure 5.19 shows a 3-heap. Notice that a d-heap is much shallower than a
binary heap, improving the running time of Inserts to O(logy N). However, for
large d, the DeleteMin operation is more expensive, because even though the tree is
shallower, the minimum of d children must be found, which takes d — 1 comparisons
using a standard algorithm. This raises the time for this operation to O(d log; N). If
d is a constant, both running times are, of course, O(log N ). Although an array can
still be used, the multiplications and divisions to find children and parents are now
by d, which, unless d is a power of 2, seriously increases the running time, because
we can no longer implement division by a bit shift. d-heaps are interesting in theory,
because there are many algorithms where the number of insertions is much greater
than the number of DeleteMins (and thus a theoretical speedup is possible). They are
also of interest when the priority queue is too large to fit entirely in main memory.
In this case, a d-heap can be advantageous in much the same way as B-trees. Finally,
there is evidence suggesting that 4-heaps may outperform binary heaps in practice.

Figure 5.19 A d-heap

*We use O(C log(k + 1)) instead of O(C log k) to avoid confusion for the £ = 1 case.
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The most glaring weakness of the heap lmplcmentatnon, aside from the inability
to perform Finds, is that combining two heaps into one is a hard operation. This
extra operation is known as a Merge. There are quite a few ways of implementing
heaps so that the running time of a Merge is O(log N'). We will now discuss three
data structures, of various complexity, that support the Merge operation efficiently.
'We will defer any complicated analysis until Chapter 11.

“4a

5.6. Leftist Heaps

It seems difficult to design a data structure that efficiently supports merging (that
is, processes a Merge in O(N) time) and uses only an array, as in.a binary heap.
The reason for this i$ that merging would seem to require copying one array into
another, which would take @(N) time for equal-sized heaps. For this reason, all the
advanced data structures that support efficient merging require the use of pointers.
In practice, we can expect that this will make all the other operations slower; pointer
manipulation is generally more time-consuming than multiplication ‘and d1v1s1on
by 2.

Like a binary heap, a leftist beap has both a structural property and an ordering
property. Indeed, a leftist heap, like virtually all heaps used, has the same heap order
-property we have already seen. Furthermore, a leftist heap is also a binary tree. The
only difference between a leftist heap and a binary heap is that leftist heaps are not
perfectly balanced, but actually attempt to be very unbalanced.

5.6.1. Leftist Heap Property

We define the null path length, Npl(X), of any node X to be the length of the shortest
path from X to a node without two children. Thus, the Np! of a node with zero or
one child is 0, while Np! (NULL)= —1. In the tree in Flgure 5.20, the null path
lengths are indicated inside the tree nodes.

Notice that the null path length of any node is 1 more than the minimum of the
null path lengths of its children. This apphes to nodes with less than two children
because the null path length of NULL is —

The leftist heap property is that for every node X in the heap, the null path
length of the left child is at least as large as that of the right child. This property is

Figure 5.20 Null path lengths for two trees; only the left tree is leftist
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satisfied by only one of the trees in Figure 5.20, namely, the tree on the left. This
property actually goes out of its way to ensure that the tree is unbalanced, because it
clearly biases the tree to get deep toward the left. Indeed, a tree consisting of a long
path of left nodes is possible (and actually preferable to facilitate merging)—hence
the name leftist heap. .

Because leftist heaps tend to have deep left paths, it follows that the right path
ought to be short. Indeed, the right path down a leftist heap is as short as any in the
heap. Otherwise, there would be a path that goes through some, node X and takes
the left child. Then X would violate the leftist property. '

THEOREM 5.2.
A leftist tree with r nodes on the right path must have at least 2 — 1 nodes.

PROOF: .-

The proof is by induction. If r = 1, there must be at least one tree node.
Otherwise, suppose that the theorem is true for 1, 2, ..., 7. Consider a leftist
tree with 7 + 1 nodes .on the right path. Then the root has a right subtree with
r nodes on the rlght path, and a left subtree with at least » nodes on the right
path (otherwise it would not be leftist). Applying the inductive hypothesis to
these subtrees yields a minimum of 2 — 1 nodes in each subtree. This plus the
root gives at least 27+1 — 1 nodes in the tree, proving the theorem. .

From this theorem, it follows immediately that a leftist tree of N nodes has a
right path containing‘at most{log(N + 1)) nodes. The general idea for the leftist heap
operations is to perform all the work on the right path, which is guaranteed to be
short. The only tricky part is that performing Inserts and Merges on the right path
could destroy the lefnst heap property. It turns out to be extremely easy to restore

the property.
5.6.2. Leftist Heap Operations

The fundamental operatio‘n on leftist héaps is merging Notice that insertion is merely
a special case of merging, since we may view an insertion as a Mergé of a one-node
heap with a larger heap. We will first give a simple recursive solution and then show
how this might be done nonrecursively. Our input is the two leftist heaps, H; and
Hj;, in Figure 5.21. You should check that these heaps really are leftist. Notice that
the smallest elements are at the roots. In addition to space for the data and left and
right pointers, each cell will have an entry that indicates the null path length.

If either of the two heaps is empty, then we can return the other heap. Otherwise,
to merge the two heaps, we compare their roots. First, we recursively merge the heap
with the larger root with the right subheap of the heap with the smaller root. In our
example, this means we recursively merge H, with the subheap of H, rooted at 8,
obtaining the heap in Figure 5.22.

Since this tree is formed recursively, and we have not yet finished the description
of the algorithm, we cannot at this point show how this heap was obtained. How-
ever, it is reasonable to assume that the resulting tree is a leftist heap, because it was
obtained via a recursive step. This is much like the inductive hypothesis in a proof by
induction. Since we can handle the base case (which occurs when one tree is empty),
we can assume that the recursive step works as long as we can finish the merge; this
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Figure 5.23 Result of attaching leftist heap of previous figure as Hy’s right child
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is rule 3 of recursion, which we discussed in Chapter 1. We now make this new heap
the right child of the root of H; (see Figure 5.23).

Although the resulting heap satisfies the heap order property, it is not leftist
because the left subtree of the root has a null path length of 1 whereas the right
subtree has a null path length of 2. Thus, the leftist property is violated at the root.
However, it is easy to see that the remainder of the tree must be leftist. The right
subtree of the root is leftist, because of the recursive step. The left subtree of the root
has not been changed, so it too must still be leftist. Thus, we need only to fix the
root. We can make the entire tree leftist by merely swapping the root’s left and right
children (Figure 5.24) and updating the null path length—the new null path length
is 1 plus the null path length of the new right child—completing the Merge. Notice
that if the null path length is not updated, then all null path lengths will be 0, and
the heap will not be leftist but merely random. In this case, the algorithm will work,
but the time bound we will claim will no longer be valid.

The description of the algorithm translates directly into code. The type definition
(Fig. 5.25) is the same as the binary tree, except that it is augmented with the Np/
(null path length) field. We have seen in Chapter 4 that when an element is inserted
into an empty binary tree, the pointer to the root will need to change. The easiest
way to implement this is to have the insertion routine return a pointer to the new
tree. Unfortunately, this will make the leftist heap Insert incompatible with the
binary heap Insert (which does not return anything). The last line in Figure 5.25
represents one way out of this quandary. The leftist heap insertion routine which
returns the new tree will be called Insert1; the Insert macro will make an insertion
compatible with binary heaps. Using macros this way may not be the best or safest
course, but the alternative, declaring a PriorityQuene as a pointer to a TreeNode,
will flood the code with extra asterisks. *

Because Insert is a macro and is textually substituted by the preprocessor, any
routine that calls Insert must be able to see the macro definition. Figure 5.25 would

Figure 5.24 Result of swapping children of H;’s root

* Another possibility is to accept the incompatible interfaces as a necessary evil.
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#ifndef _LeftHeap_H

struct TreeNode;
typedef struct TreeNode *PriorityQueue;

/* Minimal set of priority queue operations */

/* Note that nodes will be shared among several */
/* leftist heaps after a merge; the user must */
/* make sure to not use the old leftist heaps */

PriorityQueue Initialize( void );

ElementType FindMin( PriorityQueue H );

int IsEmpty( PriorityQueue H );

PriorityQueue Merge( PriorityQueue H1, PriorityQueue H2 );

#define Insert( X, H) (H = Insertl( ( X ), H) )
/* DeleteMin macro is left as an exercise */

PriorityQueue Insertl( ElementType X, PriorityQueue H );
PriorityQueue DeleteMinl( PriorityQueue H );

#endif

/* Place in implementation file */
struct TreeNode

{
ElementType Element;
PriorityQueue Left;
PriorityQueue Right;
int Npl;

b

Figure 5.25 Leftist heap type declarations

typically be a header file, so placing the macro declaration there is the only reasonable
course. As we will see later, DeleteMin also needs to be written as a macro.

The routine to merge (Fig. 5.26) is a driver designed to remove special cases
and ensure that H; has the smaller root. The actual merging is performed in Mergel
(Fig. 5.27). Note that the original leftist heaps should never be used again; changes
in them will affect the merged result.

The time to perform the merge is proportional to the sum of the length of the
right paths, because constant work is performed at each node visited during the
recursive calls. Thus we obtain an O(log N) time bound to merge two leftist heaps.
We can also perform this operation nonrecursively by essentially performing two
passes. In the first pass, we create a new tree by merging the right paths of both
heaps. To do this, we arrange the nodes on the right paths of H; and H; in sorted
order, keeping their respective left children. In our example, the new right path is
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PriorityQueue ]
Merge( PriorityQueue H1, PriorityQueue H2 )

{
/* 1%/ if( H1 == NULL )

/* 2%/ return H2;
/* 3%/ if( H2 == NULL )
/¥ 4%/ . return H1;
/* 5%/ if( Hl->Element < H2->Element )
/* 6%/ return Mergel( H1, H2 );
else
/% 7%/ return Mergel( H2, H1 );
}

Figure 5.26 Driving routine for merging leftist heaps

static PriorityQueue
Mergel( PriorityQueue Hl, PriorityQueue H2 )

{ ,
J/* 1%/ if( Hl->Left == NULL ) /* Single node */
/* 2%/ Hi->Left = H2; /* H1->Right is already NULL,
H1->Np1 is already 0 */

else

{
/* 3%/ H1->Right = Merge( H1->Right, H2 );
/* 4%/ if( Hl->Left->Np1 < Hi->Right->Npl )
/* 5%/ SwapChildren( H1 );
/* 6%/ H1->Np1 = H1l->Right->Np1 + 1;

}
/* 7%/ return H1;

}

Figure 5.27 Actual routine to merge leftist heaps

3, 6,7, 8, 18 and the resulting tree is shown in Figure 5.28. A second pass is made
up the heap, and child swaps are performed at nodes that violate the leftist heap
property. In Figure 5.28, there is a swap at nodes 7 and 3, and the same tree as before
is obtained. The nonrecursive version is simpler to visualize but harder to code. We
leave it to the reader to show that the recursive and nonrecursive procedures do the
same thing.

As mentioned above, we can carry out insertions by making the item to be
inserted a one-node heap and performing a Merge. To perform a DeleteMin, we
merely destroy the root, creating two heaps, which can then be merged. Thus, the
time to perform a DeleteMin is O(log N ). These two routines are coded in Figure 5.29
and Figure 5.30. DeleteMin can be written as a macro that calls DeleteMin1 and
FindMin. This is left as an exercise to the reader.
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Figure 5.28 Result of merging right paths of H; and H;

PriorityQueue
Insertl( ElementType X, PriorityQueue H )
{
PriorityQueue SingleNode;
/* 1%/ SingleNode = malloc( sizeof( struct'Treéﬁodé ) ),
/* 2%/ if( SingleNode == NULL ) .
/* 3%/ FatalError( "Out of space"'"')'
else
{ v, N :
/* 4%/ SingleNode->Element = X; SingteNode->Npl1 = 0;
/¥ 5%/ S1ng1eNode ->Left = S1ng1eNoUe >R1ght NULL;
/* 6%/ = Merge( SingleNode, H );:
} .
/¥ 7%/ return H; ‘ y
}

Figure 5.29 Insertion routine for leftist heaps
q .

Finally, we can build a leftist heap in O(N) time by building a binary heap
(obviously using a pointer implementation). Although a binary heap is clearly leftist,
this is not necessarily the best solution, because the heap we obtain is the worst
possible leftist heap. Furthermore, traversing the tree in reverse-level order is not as
easy with pointers. The BuildHeap effect can be obtained by recursively building the
left and right subtrees and then percolating the root down. The exercises contain an
alternative solution.
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/* DeleteMinl returns the new tree; */
/* To get the minimym, use FindMin */
/* This is. for convenience */

PriorityQueue
DeleteMinl( PriorityQueue H )
{
PriorityQueue LeftHeap, RightHeap;
/* 1%/ if( IsEmpty( H ) )
{
/* 2%/ . Error( "Priority queue is empty" );
/* 3*/ return H; -
}
/* 4%/ LeftHeap = H->Left;
/* 5%/ RightHeap = H->Right;
/* 6%/ free( H );
/* 7%/ return Merge( LeftHeap, RightHeap );
}

Figuré 5.30 DeleteMin routine for leftist heaps

5.7. Skew Heaps

A skew heap is a self-adjusting version of a leftist heap that is incredibly simple
to implement. The relationship of skew heaps to leftist heaps is analogous to the
relation between splay trees and AvL trees. Skew heaps are binary trees with heap
order, but there is no structural constraint on these trees. Unlike leftist heaps, no
information is maintained about the null path length of any node. The right path of
a skew heap can be arbitrarily long at any time, so the worst-case running time of
all operations is O(N). However, as with splay trees, it can be shown (see Chapter
11) that for any M consecutive operations, the total worst-case running time is
O(M log N ). Thus, skew heaps have O(log N ) amortized cost per operation.

As with leftist heaps, the fundamental operation on skew heaps is merging. The
Merge routine is once again recursive, and we perform the exact same operations
as before, with one exception. The difference is that for leftist heaps, we check to
see whether the left and right children satisfy the leftist heap order property and
swap them if they do not. For skew heaps, the swap is unconditional; we always do
it, with the oneé exception that the largest of all the nodes on the right paths does
not have its children swapped. This one exception is what happens in the natural
recursive implementation, so it is not really a special case at all. Furthermore, it is
not necessary to prove the bounds, but since this node is guaranteed not to have a
right child, it. would be silly to perform the swap and give it one. (In our example,
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Figure 5.31 Two skew heaps Hy and H»

Figure 5.32 Result of merging H; with H’s right subheap

there are no children of this node, so we do not worry about it.) Again, suppose our
input is the same two heaps as before, Figure §.31. _

If we recursively merge H, with the subheap of H; rooted at 8, we will get the
heap in Figure 5.32. ,

Again, this is done recursively, so by the third rule of recursion (Section 1.2)
we need not worry about how it was obtained. This heap happens to be leftist, but
there is no guarantee that this is always the case. We make this heap the new left
child of H;, and the old left child of H; becomes the new right child (see Fig. 5.33).

The entire tree is leftist, but it is easy to see that that is not always true: Inserting
15 into this new heap would destroy the leftist property.

We can perform all operations nonrecursively, as with leftist heaps, by merging
the right paths and swapping left and right children for every node on the right path,
with the exception of the last. After a few examples, it becomes clear that since
all but the last node on the right path have their children swapped, the net effect is that
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Figure 5.33 Result of merging skew heaps H; and H;

this becomes the new left path (see the preceding example to convince yourself).
This makes it very easy to merge two skew heaps visually.*

The implementation of skew heaps is left as a (trivial) exercise. Note that
because a right path could be long, a recursive implementation could fail because of
lack of stack space, even though performance would otherwise be acceptable. Skew
heaps have the advantage that no extra space is required to maintain path lengths
and no tests are required to determine when to swap children. It is an open problem
to determine precisely the expected right path length of both leftist and skew heaps
(the latter is undoubtedly more difficult). Such a comparison would make it easier
to determine whether the slight loss of balance information is compensated by the
lack of testing.

5.8. Binomial Queueé

Although both leftist and skew heaps support merging, insertion, and DeleteMin
all effectively in O(logN) time per operation, there is room for improvement
because we know that binary heaps support insertion in’ constant average time per
operation. Binomial queues support all three operations in O(log N} worst-case time
per operation, but insertions take constant time on average.

5.8.1. Binomial Queue Structure

Binomial queues differ from all the priority queue implementations that we have
seen in that a binomial queue is not a heap-ordered tree but rather a collection
of heap-ordered trees, known as a forest. Each of the heap-ordered trees is of a

*This is not exactly the same as the recursive implementation (but yields the same time bounds). If we
only swap children for nodes on the right path that are abdve the point where the merging of right paths
terminated due to exhaustion of one heap’sright path, we get the same result as the recursive version.
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Figure 5.35 Binomial queue H; with six elements

constrained form known as a binomial tree (the reason for the name will be obvious
later). There is at most one binomial tree of every height. A binomial tree of height 0
is a one-node tree; a binomial tree, By, of height k is formed by attaching a binomial
tree, B,_1, to the root of another binomial tree, B,_;. Figure 5.34 shows binomial
trees By, By, B;, B3, and By.

From the diagram we see that a binomial tree, B, consists of a root with
children By, By,..., B;_1. Binomial trees of height k have exactly 2% nodes, and the
number of nodes at depth d is the binomial coefficient (’;). If we impose heap order
on the binomial trees and allow at most one binomial tree of any height, we can
uniquely represent a priority queue of any size by a collection of binomial trees. For
instance, a priority queue of size 13 could be represented by the forest B3, B, Bo.
'We might write this representation as 1101, which not only represents 13 in binary
but also represents the fact that B3, B;, and By are present in the representation and
Bj is not.

As an example, a priority queue of six elements could be represented as in
Figure 5.35.
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5.8.2. Binomial Quene OMatim

The minimum element can then be found by scanning the roots of all the trees.
Since there are at most log N different trees, the minimum can be found in O(log N)
time. Alternatively, we can maintain knowledge of the minimum and perform the
operation in O(1) time, if we remember to update the minimum when it changes
during other operations.

Merging two binomial queues is a conceptually easy operation, which we will
describe by example. Consider the two binomial queues, H; and H;, with six and
seven elements, respectively, pictured in Figure 5.36.

The merge is performed by essentially adding the two queues together. Let H;
be the new binomial queue. Since H1 has no binomial tree of height 0 and H, does,
we can just use the binomial tree of height 0 in H, as part of Hj;. Next, we add
binomial trees of height 1. Since both H1 and H have binomial trees of height 1, we
merge them by making the larger root a subtree of the smaller, creating a binomial
tree of height 2, shown in Figure 5.37. Thus, H; will not have a binomial tree of
height 1. There are now three binomial trees of height 2, namely, the original trees
of Hy and H plus the tree formed by the previous step. We keep one binomial tree

Figure 5.36 Two binomial queues Hy and H

”2@ ,

Figure 5.37 Merge of the two B; trees in Hy and H,

(149
298
(1)

Figure 5.38 Binomial queue H3: the result of merging H; and H,
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of height 2 in Hj and merge the other two, creating a binomial tree of height 3.
Since H; and H- have no trees of height 3, this tree becomes part of H 3 and we are
finished. The resulting binomial queue is shown in Figure 5.38. '

Since merging two binomial trees takes constant time with almost any reasonable
implementation, and there are O(log N) binomial trees, the merge takes O(log N)
time in the worst case. To make this operation efficient, we need to keep the trees in
the binomial queue sorted by height, which is certainly a simple thing to do.

Insertion is just a special case of merging, since we merely create a one-node tree
and perform a merge. The worst-case time of this operation is likewise O(logN).
More precisely, if the priority queue into which the element is being inserted has
the property that the smallest nonexistent binomial tree is B;, the running time is
proportional to 7 + 1. For example, H3 (Fig. 5.38) is missing a binomial tree of height
1, so the insertion will terminate in two steps. Since each tree in a binomial queue
is present with probability 1, it follows that we expect an insertion to terminate in
two steps, so the average time is constant. Furthermore, an analysis will show that
performing N Inserts on an initially empty binomial queue will take O(N) worst-
case time. Indeed, it is possible to do this operation using only N — 1 comparisons;
we leave this as an exercise.

As an example, we show in Figures 5.39 through 5.45 the binomial queues that
are formed by inserting 1 through 7 in order. Inserting 4 shows off a bad case. We
merge 4 with By, obtaining a new tree of height 1. We then merge this tree with By,
obtaining a tree of height 2, which is the new priority queue. We count this as three
steps (two tree merges plus the stopping case). The next insertion after 7 is inserted
is another bad case and would require three tree merges.

A DeleteMin can be performed by first finding the binomial tree with the
smallest root. Let this tree be By, and let the original priority queue be H. We remove
the binomial tree By, from the forest of trees in H, forming the new binomial queue
H'. We also remove the root of By, creating binomial trees Bg, By,..., By, which
collectively form priority queue H". We finish the operation by merging H' and H".

As an example, suppose we perform a DeleteMin on H3, which is shown again
in Figure 5.46. The minimum root is 12, so we obtain the two priority queues H' and
H'" in Figure 5.47 and Figure 5.48. The binomial queue that results from merging
H' and H" is the final answer and is shown in Figure 5.49.

For the analysis, note first that the DeleteMin operation breaks the original
binomial queue into two. It takes O(log N) time to find the tree containing the
minimum element and to create the queues H' and H". Merging these two queues
takes O(log N) time, so the entire DeleteMin operation takes O(log N) time.

5.8.3. Implementation of Binomial Queues

The DeleteMin operation requires the ability to find all the subtrees of the root
quickly, so the standard representation of general trees'is required: The children of
each node are kept in a linked list, and each node has a pointer to its first child (if
any). This operation also requires that the children be ordered by the size of their
subtrees. We also need to make sure that it is easy to merge two trees. When two
trees are merged, one of the trees is added as a child to the other. Since this new
tree will be the largest subtree, it makes sense to maintain the subtrees in-decreasing
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Figure 5.39

Figure 5.40 .

Figure 5.41

Figure 5.42

Figure 5.43

Pigure 5.44

Figure 5.45
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Figure 5.46 Binomial queue H3
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Figure 5.47 Binomial queue H', containing all the binomial trees in H3 except B3

r®

Figure 5.48 Binomial queue H": B3 with 12 removed

Figure 5.49 Result of DeleteMin(H3)

sizes. Only then will we be able to merge two binomial trees, and thus two binomial
queues, efficiently. The binomial queue will be an array of binomial trees.

To summarize, then, each node in a binomial tree will contain the data, first
child, and right sibling. The children in a binomial tree are arranged in decreasing
rank,

Figure 5.51 shows how the binomial queue in Figure 5.50 is represented. Flgure
5.52 shows the type declarations for a node in the binomial tree.

In order to merge two binomial queues, we need a routine to merge two
binomial trees of the same size. Figure 5.53 shows how the pointers change when
two binomial trees are merged. The code to do this is simple and is shown in Fig-
ure 5.54.
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H3:® @

Figure 5.51 Representation of binomial queue H;

typedef struct BinNode *Position;
typedef struct Collection *BinQueue;

struct BinNode

{
ElementType Element;
Position LeftChild;
Position NextSibling;
b
struct Collection
{
int CurrentSize;
BinTree TheTrees[ MaxTrees ]:
b

Figure 5.52 Binomial queue type declarations

Figure 5.53 Merging two binomial trees
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/* Return the result of merging equal-sized Tl and T2 */

BinTree
CombineTrees( BinTree T1, BinTree T2 )
{
if( Ti1->Element > T2->Element )
return CombineTrees( T2, T1 );
T2->NextSibling = Tl->LeftChild;
Tl->LeftChild = T2;
return T1;

}

Figure 5.54 Routine to merge two equal-sized bino-
mial trees

We provide a simple implementation of the Merge routine. The routine combines
H; and H,, placing the result in H; and making H, empty. At any point we are
dealing with trees of rank i. T; and T; are the trees in H; and H>, respectively, and
Carry is the tree carried from a previous step (it might be NULL). 'T; is 1 if Ty
exists and is O otherwise, and the same is true for the other trees. Depending on each
of the eight possible cases, the tree that results for rank 7 and the Carry tree of rank
i + 1 is formed. This process proceeds from rank 0 to the last rank in the resulting
binomial queue. The code is shown in Figure 5.55.

The DeleteMin routine for binary queues is given in Figure 5.56.

We can extend binomial queues to support some of the nonstandard operations
that binary heaps allow, such as DecreaseKey and Delete, when the position of
the affected element is known. A DecreaseKey is a PercolateUp, which can be
performed in O(log N') time if we add a field to each node pointing to its parent. An
arbitrary Delete can be performed by a combination of DecreaseKey and DeleteMin
in O{log N) time,

Figure 5.55 Routine to merge two priority queues

/* Merge two binomial queues */
/* Not optimized for early termination */
/* H1l contains merged result */

BinQueue
Merge( BinQueue Hl1l, BinQueue H2 )
{
BinTree T1l, T2, Carry = NULL;
int i, j;

if( Hl->CurrentSize + H2->CurrentSize > Capacity )
Error( "Merge would exceed capacity" );
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Figure 5.55 (continued)

H1->CurrentSize += H2->CurrentSize;
for( i =0, j = 1; j <= H1->CurrentSize; i++, j *= 2 )

{
T1 = Hil->TheTrees[ i ]; T2 = H2->TheTrees[ i ];
switch( !!T1 + 2 * 1IT2 + 4 * lCarry )
{ .
case 0: /* No trees */
case 1: /* Only Hl1 */
break;
case 2: /* Only H2 */ -
H1->TheTrees[ i 1 = T2; N
H2->TheTrees[ i ] = NULL;
break;
case 4: /* Only Carry */
H1->TheTrees[ i ] = Carry;
Carry = NULL;
break;
case 3: /* H1 and H2 */
Carry = CombineTrees( T1, T2 );" ’
H1->TheTrees[ i ] = H2->TheTrees[ i ] = NULL;
break; B
case 5: /* H1 and Carry */
Carry = .CombineTrees( T1l, Carry );
H1->TheTrees[.i ] = NULL;
break;
case 6: /* H2 and Carry */
Carry = CombineTrees( T2, Carry );
’ H2->TheTrees[ i ] = NULL;
break;
case 7: /* All three */
H1->TheTrees[ i ] = Carry;
Carry = CombineTrees( T1, T2 );
H2->TheTrees[ i ] = NULL;
break;
!
}
return Hl1;
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ElementType
DeleteMin( BinQueue H )
{
int i, j; : _
int MinTree; /* The tree with the minimum item */

BinQueue DeletedQueue;
Position DeletedTree, OTdRoot;
ElementType MinItem;

if( IsEmpty( H ) )

{
Error( "Empty binomial queue" );
return -Infinity;

}

MinItem = Infinity;
for( i = 0; i < MaxTrees; i++ )

if( H->TheTrees[ i ] &&
H->TheTrees[ i ]->Element < MinItem )

{
/* Update minimum */
MinItem = H->TheTrees[ i ] ->Element;
MinTree = 1i;

}

}

DeletedTree = H->TheTrees[ MinTree ];
O1dRoot = DeletedTree;

DeletedTree = DeletedTree->LeftChild;
free( 01dRoot );

DeletedQueue = Initialize( );
DeletedQueue->CurrentSize = ( 1 << MinTree ) - 1;
for( j = MinTree - 1; j >= 0; j-- )

DeletedQueue->TheTrees[ j ] = DeletedTree;

DeletedTree = DeletedTree->NextSibling;

DeletedQueue->TheTrees[ j 1->NextSibling = NULL;
}

H->TheTrees[ MinTree ] = NULL;
H->CurrentSize -= DeletedQueue->CurrentSize + 1;

Merge( H, DeletedQueue );
return MinItem;

}

Figure 5.56 DeleteMin for binomial queues
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Summary

In this chapter we have seen various implementations and uses of the priority queue
ADPT. The standard binary heap implementation is elegant because of its simplicity
and speed. It requires no pointers and only a constant amount of extra space, yet
supports the priority queue operations efficiently.

‘We considered the additional Merge operation and developed three implemen-
tations, each of which is unique in its own way. The leftist heap is a wonderful
example of the power of recursion. The skew heap represents a remarkable data
structure because of the lack of balance criteria. Its analysis, which we will perform
in Chapter 11, is interesting in its own right. The binomial queue shows how a
simple idea can be used to achieve a good time bound.

We have also seen several uses of priority queues, ranging from operating
systems scheduling to simulation. We will see their use again in Chapters 6, 9,
and 10.

Exercises

5.1 Suppose that we replace the DeleteMin function with FindMin. Can both Insert
and FindMin be implemented in constant time?

5.2 a. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, and
2, one at a time, into an initially empty binary heap.

b. Show the result of using the linear-time algorithm to build a binary heap
using the same input.

5.3 Show the result of performing three DeleteMin operations in the heap of the
previous exercise.

5.4 Write the routines to do a percolate up and a percolate down in a binary heap.

5.5 Write and test a program that performs the operations Insert, DeleteMin,
BuildHeap, FindMin, DecreaseKey, Delete, and IncreaseKey in a binary heap.

5.6 How many nodes are in the large heap in Figure 5.13?

5.7 a. Prove that for binary heaps, BuildHeap does at most 2N — 2 comparisons
between elements,

b. Show that a heap of eight elements can be constructed in eight comparisons
between heap elements.

¢. Give an algorithm to build a binary heap in %N + O(log N) element
comparisons.

**5.8 Show that the expected depth of the kth smallest element in a large complete

heap (you may assume N = 2% — 1) is bounded by log k.

5.9%a. Give an algorithm to find all nodes less than some value, X, in a binary heap.
Your algorithm should run in O(K), where K is the number of nodes output.

b. Does your algorithm extend to any of the other heap structures discussed in
this chapter?
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*c. Give an algorithm that finds an arbitrary item X in a binary heap using at
most roughly 3N /4 comparisons.

Propose an algorithm to insert M nodes into a binary heap on N elements in
O(M + logN loglog N ) time. Prove your time bound.

Write a program to take N elements and do the following:
a. Insert them into a heap one by one.
b. Build a heap in linear time.

Compare the running time of both algorithms for sorted, reverse-ordered, and
random inputs.

Each DeleteMin operation uses 2 log N comparisons in the worst case.

*a. Propose a scheme so that the DeleteMin operation uses only logN +
loglog N + O(1) comparisons between elements. This need not imply less
data movement.

*b. Extend your scheme in part (a) so that only log N + logloglog N + O(1)
comparisons are performed.

*c. How far can you take this idea?

d. Do the savings in comparisons compensate for the increased complexity of
your algorithm?

If a d-heap is stored as an array, for an entry located in position i, where are
the parents and children?

Suppose we need to perform M PercolateUps and N DeleteMins on a d-heap
that initially has N elements.

a. What is the total running time of all operations in terms of M, N, and d?
b. If d = 2, what is the running time of all heap operations?
c. Ifd = ®(N), what is the total running time?

*d. What choice of d minimizes the total running time?

A min-max heap is a data structure that supports both DeleteMin and
DeleteMax in O(log N) per operation. The structure is identical to a binary
heap, but the heap order property is that for any node, X, at even depth, the
key stored at X is smaller than the parent but larger than the grandparent
(where this makes sense), and for any node X at odd depth, the key stored at
X is larger than the parent but smaller than the grandparent. See Figure 5.57.

a. How do we find the minimum and maximum elements?

- *b. Give an algorithm to insert a new node into the min-max heap.

*

5.16
5.17

*c. Give an algorithm to perform DeleteMin and DeleteMax.

*d. Can you build a min-max heap in linear time?

*e. Suppose we would like to support DeleteMin, DeleteMax, and Merge.
Propose a data structure to support all operations in O(log N) time.

Merge the two leftist heaps in Figure 5.58.

Show the result of inserting keys 1 to 15 in order into an initially empty lefist
heap.
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Figure 5.57 Min-max heap fi1

Figure 5.58

5.18

5.19
5.20

5.21

Prove or disprove: A perfectly balanced tree forms if keys 1 to 2% — 1 are
inserted in order into an initially empty leftist heap.

Give an example of input that generates the best leftist heap.
a. Can leftist heaps efficiently support DecreaseKey?
b. What changes, if any (if possible), are required to do this?

One way to delete nodes from a known position in a leftist heap is to use a
lazy strategy. To delete a node, merely mark it deleted. When a FindMin or
DeleteMin is performed, there is a potential problem if the root is marked
deleted, since then the node has to be actually deleted and the real minimum
needs to be found, which may involve deleting other marked nodes. In this
strategy, Deletes cost one unit, but the cost of a DeleteMin or FindMin
depends on the number of nodes that are marked deleted. Suppose that after
a DeleteMin or FindMin there are k fewer marked nodes than before the
operanon

a. Show how to perform the DeleteMin in O(k log N) time.
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**b. Propose an implementation, with an analysis to show that the time to

5.22

5.23
5.24
5.25

5.26

perform the DeleteMin is O(k log(2N/k)).

We can perform BuildHeap in linear time for leftist heaps by considering each
element as a one-node leftist heap, placing all these heaps on a queue, and
performing the following step: Until only one heap is on the queue, dequeue
two heaps, merge them, and enqueue the result.

a. Prove that this algorithm is O(N) in the worst case.

b. Why might this algorithm be preferable to the algorithm described in the
text?

Merge the two skew heaps in Figure 5.58.
Show the result of inserting keys 1 to 15 in order into a skew heap.

Prove or disprove: A perfectly balanced tree forms if the keys 1 to 2% — 1 are
inserted in order into an initially empty skew heap.

A skew heap of N elements can be built using the standard binary heap
algorithm. Can we use the same merging strategy described in Exercise 5.22

" for skew heaps to get an O(N) running time?

5.27

5.28
5.29
5.30

*

5.31

Figure

®

Prove that a binomial tree B, has binomial trees Bg, By, ..., Bi—; as children
of the root.

Prove that a binomial tree of height & has (5) nodes at depth d.
Merge the two binomial queues in Figure 5.59.

a. Show that N Inserts into an initially empty binomial queue takes O(N)
time in the worst case.

b. Give an algorithm to build a binomial queue of N elements, using at most
N — 1 comparisons between elements.

c. Propose an algorithm to insert M nodes into a binomial queue of N elements
in O(M + log N) worst-case time. Prove your bound.

Write an efficient routine to perform Insert using binomial queues. Do not call
Merge. :

5.59

183



184

CHAPTER 5/PRIORITY QUEUES (HEAPS)

5.32 For the binomial queue:
a. What happens when the call Merge(H, H ) is made? Modify the code to fix
this problem.

b. Modify the Merge routine to terminate merging if there are no trees left in
H> and the Carry tree is NULL.

c. Modify the Merge so that the smaller tree is always merged into the larger.

*+5.33 Suppose we extend binomial queues to allow at most two trees of the same

height per structure. Can we obtain O(1) worst-case time for insertion while
retaining O(log N) for the other operations?

5.34 Suppose you have a number of boxes, each of which can hold total weight C
and items i1, 72, i3,..., iN, Which weigh w1, w2, w3,..., wn, respectively. -
The object is to pack all the items without placing more weight in any box
than its capacity and using as few boxes as possible. For instance, if C = 5,
and the items have weights 2, 2, 3, 3, then we can solve the problem with two
boxes. ‘

In general, this problem is very hard, and no efficient solution is known.
Write programs to implement efficiently the following approximation strate-
gies: '

a. Place the weight in the first box for which it fits (creating a new box if there
is no box with enough room). (This strategy and all that follow would give
three boxes, which is suboptimal.)

b. Place the weight in the box with the most room for it.

c. Place the weight in the most filled box that can accept it without over-
flowing.

**d. Are any of these strategies enhanced by presorting the items by weight?

5.35 Suppose we want to add the DecreaseAllKeys(A) operation to the heap
repertoire. The-result of this operation is that all keys in the heap have their
value decreased by an amount A. For the heap implementation of your choice,
explain the necessary modifications so that all other operations retain their
running times and DecreaseAllKeys runs in O(1).

5.36 Which of the two selection algorithms has the better time bound?
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o ~ CHAPTER 6

Sorting

In this chapter we discuss the problem of sorting an array of elements. To simplify
matters, we will assume in our examples that the array contains only integers, al-
though, obviously, more complicated structures are possible. For most of this chapter,
we will also assume that the entire sort can be done in main memory, so that the num-
ber of elements is relatively small (less than a million). Sorts that cannot be performed
in main memory and must be done on disk or tape are also quite important. This
type of sorting, known as external sorting, will be discussed at the end of the chapter.
Our investigation of internal sorting will show that

o There are several easy algorithms to sort in O(N?2), such as insertion sort.

e There is an algorithm, Shellsort, that is very simple to code, runs in o(N?),
and is efficient in practice.

o There are slightly more complicated O(N log N) sorting algorithms.
® Any general-purpose sorting algorithm requires (N log N) comparisons.

The rest of this chapter will describe and analyze the various sorting algorithms.
These algorithms contain interesting and important ideas for code optimization as
well as algorithm design. Sorting is also an example where the analysis can be
precisely performed. Be forewarned that where appropriate, we will do as much
analysis as possible. ' '

6.1. Preliminaries

The algorithms we describe will all be interchangeable. Each will be passed an array
containing the elements and an integer containing the number of elements.

We will assume that N, the number of elements passed to our sorting routines,
has already been checked and is legal. In accordance with C conventions, the data
willstart at position 0 for all the sorts.

We will also assume the existence of the “<” and “>” operators, which
can be used to place a consistent ordering on the input. Besides the assignment
operator, these are the only operations allowed on the input data. Sorting under
these conditions is known as comparison-based sorting.
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6.2. Insertion Sort

6.2.1. The Algorithm . o
One of the simplest sorting algorithms is the insertion sort. Insertion sort consists
of N — 1 passes. For pass P = 1 through N — 1, insertion sort ensures that the
elements in positions O through P are in sorted order. Insertion sort makes use of
the fact that elements in positions 0 through P — 1 are already known to be in sorted
order. Figure 6.1 shows a sample array after each pass of insertion sort. .
Figure 6.1 shows the general strategy. In pass P, we move the element in
position P left until its correct place is found among the first P + 1 elements. The
code in Figure 6.2 implements this strategy. Lines 2 through 5 implement that data
movement without the explicit use of swaps. The element in position P is saved in
Tmp, and all larger elements (prior to position P) are moved one spot to the right.
Then Tmp is placed in the correct spot. This is the same technique that was used in
the implementation of binary heaps. ‘

¥

Figure 6.1 Insertion sort after each pass

Original 34 8 64 51 32 21 | . Positions Moved.
After p = 1 8 34 64 51 32 21 Y
Afterp=2 [ 8 34 64 51 32 21 0
Afterp=3 | 8 34 51 64 32 21 1,
Afterp = 4 8 32 34 51 64 21 3
Afterp =5 8 21 32 34 51 64 4

Figure 6.2 Insertion sort routine

void PR
InsertionSort( ElementType A[ ], int N )
{
int j, P;
Element Type Tmp;
/* 1%/ for( P =1; P < N; P+ )
{
/* 2%/ Tmp = A[ P ];
/* 3%/ for( j=P; j>0& A[ j-11> Tmp; j--)
/¥ a*/ ALj1=Alj-11; S
/* 5%/ AL j 1 = Tmp;
}




6.3. A LOWER BOUND FOR SIMPLE SORTING ALGORITHMS

6.2.2. Analysis of Insertion Sort

Because of the nested loops, each of which can take N iterations, insertion sort is
O(N?2). Furthermore, this bound is tight, because input in reverse order can achieve
this bound. A precise calculation shows that the test at line 4 can be executed at
most P + 1 times for.each value of P. Summing over all P gives a total of

N
>i=2+3+4+.+N = 0(N?)
i=2

On the other hand, if thé input is presorted, the running time is O(N ), because
the test in the inner for loop always fails immediately. Indeed, if the input is almost
sorted (this term will be more rigorously defined in the next section), insertion sort
will run quickly. Because of this wide yariation, it is worth analyzmg the average-case
behavior of this algorithm. It.turns out that the average case is @(N 2) for insertion
sort, as well as for a variety of other sorting algorithms, as the next section shows.

6.3. ALower Bound for ‘Simple Sorting Algorithms :

An inversion in an array of numbers is any ordered pair (i,f) having the. property
that/ < j but A[i] > A[j]. In the example of the last section, the input list 34, 8, 64,
51, 32, 21 had nine inversions, namely (34, 8), (34, 32), (34, 21),-(64, 51), (64, 32),
(64,21), (51, 32), (51,21), and (32, 21). Notice that this is exactly the number of
swaps that needed to be (implicitly) performed by insertion sott. This is always the
case, because swapping two adjacent elements that are out of place removes exactly
one inversion, and a sorted array has no inversions. Since there is O(N) other work
involved in the algorithm, the running time of insertion sort is O(I + N.), where I
is the number of inversions in the original array. Thus, insertion sort runs in linear
time if the number of inversions is O(N ).

We can compute precise hounds on the average running time of insertion sort
by computing the average number of inversions in a permutation. As usual, defining
average is a difficult proposition We will assume that there are no duplicate elements
(if we allow duplicates, it is not even clear what the average number of duplicates
is). Using this assumption, we can assume that the input is some permutation of the
first N integers (since only relative ordering is important) and that all are equally
likely. Under these assumptions, we have the following theorem:

THEOREM 6.1.

The average number .of inversions in an array of N dzstmct numbers is

N(N - 1)/4.

PROOF:

For any list, L, of numbers, consider L,, the list in reverse order. The reverse
list of the example is 21, 32, 51, 64, 8, 34. Consider any pair of two numbers
in the list (x, ), with y > x. Clearly, in exactly one of L and L, this ordered
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pair represents an inversion. The total number -of these pairs-in‘a list L and
its reverse L, is N(N — 1)/2. Thus, an average llSt has half this amount, or
N(N — 1)/4 inversions.

This theorem implies that insertion sort is quadranc on average. It also provides
a very strong lower bound about any algorithm that only exchanges adjacent ele-
ments.

THEOREM 6.2.
Any algorithm that sorts by exchangmg ad/acent elements requires (L(N?) time
.. on average.

PROOF:
The average number of inversions is initially N (N =14 = Q(N 2) Each swap
removes only one mversxon, so 3(N?2) swaps are requxred

This is an example of a lower-bound proof. It is valid not only for insertion sort,
which performs adjacent exchanges implicitly, but also for other simple algorithms
such as bubble sort and selection sort, which we will not describe here. In fact, it is
valid over an entire class of sorting algorithms, including'those undiscovered, that
perform only adjacent exchanges. Because of this, this proof cannot be confirmed
empirically. Although this lowér-bound proof is rather simple, in general proving
lower bounds is much more complicated than proving upper bounds and in some
cases resembles voodoo.

This lower bound shows us that in order for a sorting algorithm to run in
subquadratic, or o(N?2), time, it must do comparisons and, in particular, exchanges
between elements that are far apart. A sorting algorithm makes progress by, eliminat-.
ing inversions, and to run efﬁc1ently, it must eliminate more than ]ust one inversion
per exchange

6.4. Shellsort o

Shellsort, named after its inventor, Donald Shell, was one of the first algorithms
to break the quadratic time barrier, although it was not until several years after
its initial discovery, that a subquadratic time bound was proven. As suggested in
the previous section, it works by comparing elements that are distant; the distance
between comparisons decreases as the algorithm runs until the last phase, in which
adjacent elements are compared. For this reason, Shellsort is sometimes referred to
as diminishing increment sort.

Shellsort uses a sequence, b1, ba, ..., b, called the increment sequence. Any
increment sequence will do as long as b; = 1, but some choices are better than
others (we will discuss that question later). After a phase, using some increment by,
for every i, we have A[i] = A[i + b,] (where this makes sense); all elements spaced
b}, apart are sorted. The file is then said to be by-sorted. For example, Figure 6.3
shows an array after several phases of Shellsort. An important property of Shellsort
(which we state without proof) is that an hy-sorted file that is then bj_,-sorted



6.4. SHELLSORT 191

Original 81 94 11 9 12 35 17 95 28 58 41 75 15

AfterSsort | 35 17 11 28 12 41 75 15 96 58 81 94 95
After3sort | 28 12 11 35 15 41 58 17 94 75 81 96 95
Afterl-sort | 11 12 15 17 28 35 41 58 75 81 94 95 96

Figure 6.3 Shellsort after each pass '

remains hy-sorted. If this were not the case, the algorithm would likely be of little
value, since work done by early phases would be undone by later phases.

- The general strategy to b-sort is for each position, i, in by, by +1,...,N — 1,
place the element in the correct spot among i, i — by, i — 2h,, etc. Although th1s does
not affect the implementation, a careful examination shows that the action of an
hy-sort is to perform an insertion sort on b, independent subarrays. This observation
will be important when we analyze the running time of Shellsort.

" A popular (but poor) choice for increment sequence is to use the sequence
suggested by Shell: b, = |[N/2|, and b, = |b;1/2]. Figure 6.4 contains a program
that implements Shellsort using this sequence. We shall see later that there are
increment sequences that give a significant improvement in the algorithm’s running
time; even a minor change can drastically affect performance (Exercise 6.10).

The program in Figure 6.4 avoids the explicit use of swaps in the same manner
as our implementation of insertion sort.

Figure 6.4 Shellsort routine using Shell’s increments
(better increments are possible)

void
Shellsort( ElementType A[ 1, int N )
{
int i, j, Increment;
ElementType Tmp;

/* 1%/ for( Increment = N / 2; Increment > 0; Increment /= 2 )
/* 2%/ for( i = Increment; i < N; i++ )

{
/* 3%/ Tmp = A[ 1 I;
/¥ 4%/ for( j = i; j >= Increment; j -= Increment )
/* 5%/ if( Tmp < A[ j - Increment ] )
/* 6%/ AL § 1 =A[ j - Increment ];

else

/% 7%/ break;
/% 8%/ AL j 1 = Tmp;

}
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6.4.1. Worst-Case Analysis of Shellsort

Although Shellsort is simple to code, the analysis of its tunmng time is quite another
story. The running time of Shellsort depends on the choice of increment sequence,
and the proofs can be rather involved. The average-case analysis of Shellsort is a
long-standing open problem, except for the most trivial increment sequences. We
will prove tight worst-case bounds for two particular increment sequences.

THEOREM 6.3.
The worst-case running time of Shellsort, using Shell’s increments, is O(N?2).
PROOF: '
The proof requires showing not only an upper bound on the worst-case running
time but also showing that there exists some input that actually takes Q(N?)
time to run. We prove the lower bound first, by constructing a bad case, First,
we choose N to be a power of 2. This makes all the increments even, except for
the last increment, which is 1. Now, we will give as input an array, InputData,
with the N/2 largest numbers in the even positions and the N/2 smallest
numbers in the odd positions (for this proof, the first position.is position 1).
As all the increments except the last are even, when we come to the last pass,
the N/2 largest numbers are still all in even posmons and the N/2 smallest
numbers are still all in odd positions. The ith smallest number (i = N/2) is
thus in position 2i — 1 before the beginning of the last pass. Restoring the ith
element to its correct place requires moving it i — 1 spaces in the array. Thus,
to merely place the N/2 smallest elements in the correct place réquires at least
le — 1 = Q(N?) work. As an example, Figure 6.5 shows a bad (but not
thc worst) input when N = 16. The number of inversions remaining after the
2-sortisexactly 1 +2+3 +4 + 5 + 6 + 7 = 28; thus, the last pass will take
considerable time.

To finish the proof, we show the upper bound of O(N?). As we have
observed before, a pass with increment b, consists of b, insertion sorts of
about N/h, elements. Since insertion sort is quadratic, the total cost of a pass
is O(hp(N/hi)?) = O(N 2/b‘,l) Summing over all passes gives a total bound of
O(X:_{N?%h;) = O(N23!_, 1/b;). Because the increments form a geometric
series with common ratio 2 and the largest term in the series is by = 1,

f=1 1/h; < 2. Thus we obtain a total bound of O(N?).

The problem with Shell’s increments is that pairs of increments are not nec-
essarily relatively prime, and thus the smaller increment can have little effect. Hibbard

Figure 6.5 Bad case for Shellsort with Shell’s increments
(positions are numbered 1 to 16)

Start 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16
After 8-sort 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16
After 4-sort 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16
After 2-sort 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16
After 1-sort 1 23 4 5 6 7 8 9 10 11 12 13 14 15 16
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suggested a slightly different increment sequence, which gives better results in practice
(and theoretically). His increments are of the form 1, 3, 7, .. ., 2¥ — 1. Altheugh these
increments are almost identical, the key difference is that consecutive increments
have no common factors. We now analyze the worst-case running time of Shellsort
for this increment sequence. The proof is rather complicated.

_ THEOREM 6.4.
The worst-case running time of Shellsort using Hibbard’s increments is ®(N372).

PROOF:

We will prove only the upper bound and leave the proof of the lower bound as
an exercise. The proof requires some well-known results from additive number
theory. References to these results are provided at the end of the chapter.

For the upper bound, as before, we bound the running time of each pass
and sum over all passes. For increments b, > N2, we will use the bound
O(N?2/hy) from the previous theorem. Although this bound holds for the other
increments, it is too large to be useful. Intuitively, we must take advantage of
the fact that this increment sequence is special. What we need to show is that
for any element Ap in position P, when it is time t rm an hk-sort there
are only a few elements to the left of position P th: rger than Ap. -

When we come to hy-sort the input array, we know that it ‘has already been
bi+1- and by.;-sorted. Prior to the by-sort, consider elemcnts in positions P and
P—i,i =P.Ifiisa multlple of by41 or by, 3, then clearly A[P =] < A[P]. We
can say more, however. If i is expressible as a linear comblnatlon (in nonnegative
integers) of bp.1 and hyy,, then A[P —i] < A[P]. As an example, when we
come to 3-sort, the file is already 7- and 15-sorted. 52 is expressible as a linear
combination of 7 and 15, because 52 = 1% 7+ 3% 15, Thus, A[100] cannot be
larger than A[152] because A[100] < A[107] = A 122] = A[137] = A[152]

Now, byiy = 2b;,; + 1, 50 b4, and hk+2 car re a commion factor.
In this case, it is possible 0 show that all integers that are at least as large as
(b1 — 1)(Prez — 1) = 8h% + 4h;, can be expressed as a linear combination of
hp+1 and b5 (see the rcference at the end of the chapter).

This tells us that the bedy of the for loop at line 4 can be executed at most
8h, +4 = O(by) times for each of the N — b, positions. This gives a bound of
O(N by) per pass.

Using the fact that about half the increments satisfy b, < JN, and
assuming that ¢ is even, the total running time is then

t/2 12
(SNhk+ Z N"/hk) =O(NtZ:hk + N2 i 1/hk>

k=t12+1 k=1 k=t12+1

Because both sums are geometric series, and since by, = @(/N), this simpli-
fies to

NZ
= O(Nhy)+ O (B‘) = O(N3?)
12

193



194

CHAPTER 6/SORTING

The average-case running time of Shellsort, using  Hibbard’s increments, -is
thought to be O(N**), based on simulations, but nobody has been able to prove
this. Pratt has shown that the ®(N3?2) bound applies to a wide range of increment
sequences.

Sedgewick has proposed several increment sequences that give an O(N 43y
worst-case running time (also achievable). The average running time is conjectured
to be O(N7%) for these increment sequences. Empirical studies show that these
sequences perform significantly better in practice than Hibbard’s. The best of these
is the sequence {1, 5,19,41,109,...}, in which the terms are either of the form
9-4 —9-2/ +1o0r4 — 32 + 1, This is most easily implemented by placing these
values in an array. This increment sequence is the best known in practice, although
there is a lingering possibility that some increment sequence might exist that could
give a significant improvement in the running time of Shellsort.

There are several other results on Shellsort that (generally) require difficult
theorems from number theory and combinatorics and are mainly of theoretical
interest. Shellsort is a fine example of a very simple algorithm with an extremely
complex analysis.

The performance of Shellsort is quite acceptable in practice, even for N in the
tens of thousands. The simplicity of the code makes it the algorithm of choice for
sorting up to moderately large input.

6.5. Heapsort

As mentioned in Chapter 5, priority queues can be used to sort in O(N log N) time.
The algorithm based on this idea is known as heapsort and gives the best Big-Oh
running time we have seen so far. In practice however, it is slower than a version of
Shellsort that uses Sedgewick’s increment sequence.

Recall, from Chapter 5, that the basic strategy is to build a binary heap of N
elements. This stage takes O(N) time. We then perform N DeleteMin operations.
The elements leave the heap smallest first, in sorted order. By recording these
elements in a second array and then copying the array back, we sort N elements.
Since each DeleteMin takes O(log N ) time, the total running time is O(N log N ).

The main problem with this algorithm is that it uses an extra array. Thus, the
memory requirement is doubled. This could be a problem in some instances. Notice
that the extra time spent copying the second array back to the first is only O(N), so
that this is not likely to affect the running time significantly. The problem is space.

A clever way to avoid using a second array makes use of the fact that after each .
DeleteMin, the heap shrinks by 1. Thus the cell that was last in the heap can be
used to store the element that was just deleted. As an example, suppose we have a
heap with six elements. The first DelezeMin produces A;. Now the heap has only
five elements, so we can place A; in position 6. The next DeleteMin produces A;.
Since the heap will now only have four elements, we can place A; in position 5.

Using this strategy, after the last DeleteMin the array will contain the elements
in decreasing sorted order. If we want the elements in. the more typical increasing
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sorted order, we can change the ordering property so that the parent has a larger
key than the child. Thus we have a (max)heap.

In our implementation, we will use a (max)heap, but avoid the actual ADT for
the purposes of speed. As usual, everything is done in an array. The first step builds
the heap in linear time. We then perform N — 1 DeleteMaxes by swapping the last
element in the heap with the first, decrementing the heap size, and percolating down.
When the algorithm terminates, the array contains the elements in sorted order. For
instance, consider the input sequence 31,41, 59, 26, 53, 58, 97. The resulting heap is

shown in Figure 6.6. _
Figure 6.7 shows the heap that results after the first DeleteMax. As the

figures imply, the last element in the heap is 31; 97 has been placed in a part of
the heap array that is technically no longer part of the heap. After 5 more DeleteMax

Figure 6.6 (Max) heap after BuildHeap phase

97 |53 |59 (26 |41 |58 |31
0 1 2 3 4 5 6 7 8 9 10

Figure 6.7 Heap after first DeleteMax

97

59 153 |58 (2641|3197
0 1 2 3 4 5 6 7 8 9 10
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/*
/*
/*

/*
/*

1*/

2%/
3*/
4%/
5%/
6%/

7*/

8*/

1*/
2%/
3%/

4%/
5%/

#define LeftChild( i) (2 * (i) + 1)

void o
PercDown( ElementType A[ ], int i, int N )

int Child;
ElementType Tmp;

for( Tmp = A[ i ]; LeftChild( i ) < N; i = Child )
{

Child = LeftChild( 1 );

if( Child '= N - 1 & A[ Child + 1 ] > A[ Child ] )
Child++;

if( Tmp < A[ Child 1 ) -
A[ i ] = A[ Child ];

else
break;
}
A[ i ] = Tmp;
}
void
Heapsort( ElementType A[ 1, int N )
{
int i;
for(i =N/ 2; 4> 0; i-- ) /* BuildHeap */
PercDown( A, i, N )3
for(i=N-1; 3 >0; i--)
{
Swap( &A[ 0 ], &A[ i ] ); /* DeleteMax */
PercDown( A, 0, i );
}
}

Figure 6.8 Heapsort

operations, the heap will actually have only one element, but the elements left in the
heap array will be in sorted order.

The code to perform heapsort is given in Figure 6.8. The slight complication
is that, unlike the binary heap, where the data begin at array index 1, the array
for heapsort contains data in position 0. Thus the code is a little different from the
binary heap code. The changes are minor.

6.5.1. Analysis of Heapsort

As we saw in Chapter 5, the first phase, which constitutes the building of the heap,
uses at most 2N comparisons. In the second phase, the ith DeleteMax uses at most
2|log i| comparisons, for a total of at most 2N log N — O(N) comparisons (assuming
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N = 2). Consequently, in the worst case, at most 2N log N — O(N) comparisons
are used by heapsort. Exercise 6.12(b) asks you to show that it is possible for all of
the DeleteMax operations to achieve their worst case simultaneously.

Experiments have shown that heapsort is an extremely stable algorithm: On
average it uses only slightly fewer comparisons than the worst-case bound suggests.
Until recently, however, nobody had been able to show nontrivial bounds on
heapsort’s average running time. The problem, it seems, is that successive DeleteMax
operations destroy the heap’s randomness, making the probability arguments very
complex. Recently another approach proved successful. '

THEOREM 6.5.
The average number of comparisons used to heapsort a random permutation
of N distinct items is 2N log N — O(N loglog N ).

PROOF:

The heap construction phase uses @(N) comparisons on average, and so we
only need to prove the bound for the second phase. We assume a permutation
of {1,2,...,N}.

Suppose the ith DeleteMax pushes the root element down d; levels. Then
it uses 2d; comparisons. For heapsort on any input, there is a cost sequence
D :dy,ds,...,dn that defines the cost of phase 2. That cost is given by
Mp = Z,N:l d;; the number of comparisons used is thus 2Mp.

Let f(N) be the number of heaps of N items. One can show (Exercise 6.42)
that f(N) > (N/(4e))N (where e = 2.71828...). We will show that only an
exponentially small fraction of these heaps (in particular (N/16)N) have a cost
smaller than M = N{log N — loglog N — 4). When this is shown, it follows
that the average value of Mp is at least M minus a term that is o(1), and thus
the average number of comparisons is at least 2M. Consequently, our basic
goal is to show that there are very few heaps that have small cost sequences.

Because level d; has at most 2% nodes, there are 2% possible places that the
root element can go for any d;. Consequently, for any sequence D, the number
of distinct corresponding DeleteMax sequences is at most

Sp = 24242 ...2dx
A simple algebraic manipulation shows that for a given sequence D
Sp = 2Mp

Because each d; can assume any value between 1 and |log N}, there are
at most (log N)N possible sequences D. It follows that the number of distinct
DeleteMax sequences that require cost exactly M is at most the number of cost
sequences of total cost M times the number of DeleteMax sequences for each
of these cost sequences. A bound of (log N)N2M follows immediately.

The total number of heaps with cost sequence less than M is at most

M-1
(log NN 2! < (logN)N2M

i=1
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If we choose M = N(log N —loglog N —4), then the number of heaps that
have cost sequence less than M is at most (N /16)N, and the theorem follows
from our earlier comments. :

Using a more complex argument, it can be shown that heapsort always uses at
least N log N — O(N) comparisons, and that there are inputs that can achieve this
bound. It seems that the average case should also be 2N log N — O(N') comparisons
(rather than the more linear second term in Theorem 6.5); whether this is provable
(or even true) is open.

6.6. Mergesort

We now turn our attention to mergesort. Mergesort runs in O(N log N) worst-case
running time, and the number of comparisons used is nearly optimal. It is a fine
example of a recursive algonthm

The fundamental operation in this algorithm is merging two sorted llsts Because
the lists are sorted, this can be-done in one pass through the input, if the output is
put in a third list. The basic merging algorithm takes two input arrays A and B, an
output array C, and three counters, Aptr, Bptr, and Cptr, which are initially set to
the beginning of their respective arrays. The smaller of A[Aptr] and B[Bptr] is copied
to the next entry in C, and the appropriate counters.are advanced. When either input
list is exhausted, the remainder of the other list is copied to C. An example of how
the merge routine works is provided for the following input.

1113(24]26 2 [15(127)38

T T T
Aptr Bptr - Cptr

If the array A contairis 1,13, 24, 26, and B contains 2, 15, 27, 38, then the algorithm
proceeds as follows: First, a comparison is done between 1 and 2. 1 is added to C,
and then 13 and 2 are compared.

113,24} 26 2 11512738 1
i) 7 T
Aptr Bptr Cprr

2 is added to C, and then 13 and 15 are compared.

1113124(26 2 {15(27] 38 12
T ) ' T
Aptr Bpir Cptr

13 is added to C, and then 24 and 15 are compared. This proceeds until 26 and 27
are compared.
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1(13]24]26 2 |15]27] 38 12113
i i f
Aptr ‘Bptr Cptr
1 ]13{24]26 2 [15]27]38 1]2]13]1s
T T T
Aptr Bptr Cptr
1113]24]26] | 2:|15]27]38 1]2[13]15]24
T T T
Aptr Bptr Cptr

26 is added to C, and the A array is exhausted.

11132426 2 |115(27 (38 12 |13[15(24|26

1 ) [}
Aptr Bptr Cptr

The remainder of the B array is then copied to C.

1113(24}26 2 11512738 112 |13(15(24|26]|27]38

T 1
Aptr Bptr

The time to merge two sorted lists is clearly linear, because at most N — 1
comparisons are made, where N is the total number of elements. To see this, note
that every comparison adds an element to C, except the last comparlson, which adds
at least two.

The mergesort algorithm is therefore easy to describe. If N = 1, there is only
one element to sort, and the answer is at hand. Otherwise, recursively mergesort
the first half and the second half. This gives two sorted halves, which can then be
merged together using the merging algorithm described above. For instance, to sort
the eight-element array 24, 13,26,1,2,27, 38, 15, we recursively sort the first four
and last four elements, obtaitiing 1, 13,24, 26, 2, 15,27, 38. Then we merge the two
halves as above, obtaining the final list 1,2, 13, 15, 24,26, 27, 38. This algorithm is
a classic divide-and-conquer strategy. The problem is divided into smaller problems
and solved recursively. The conquering phase consists of patching together the
answers. Divide-and-conquer is a very powerful use of recursion that we will see
many times.

An implementation of mergesost is provided in Figure 6.9. The procedure called
Mergesort is just a driver for the recursive routine MSort.

The Merge routine is subtle. If a temporary array is declared locally for each
recursive call of Merge, then there could be log N temporary arrays active at any
point. This could be fatal on a-machine with small memory. On the other hand, if the

Cptr
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void ,
MSort( ElementType A[ 1, ElementType TmpArray[ 1,
int Left, int Right )

{
int Center;
if( Left < Right )
{ .
Center = ( Left + Right ) / 2;
MSort( A, TmpArray, Left, Center );
MSort( A, TmpArray, Center + 1, Right );
Merge( A, TmpArray, Left, Center + 1, Right );
}
}
void
Mergesort( ElementType A[ ], int N )
{
ElementType *TmpArray;
TmpArray = malloc( N * sizeof( ElementType ) );
if( TmpArray != NULL )
{
MSort( A, TmpArray, O, N - 1 );
free( TmpArray );
}
else
FatalError( "No space for tmp array!!!" );
}

Figure 6.9 Mergesort routine

merge routine dynamically allocates and frees the minimum amount of temporary
memory, considerable time will be used by malloc. A close examination shows that
since Merge is the last line of MSort, there only needs to be one temporary array
active at any point. Further, we can use any part of the temporary array; we will use
the same portion as the input array A. This allows the improvement described at the
end of this section. Figure 6.10 implements the Merge routine. :

6.6.1. Analysis of Mergesort

Mergesort is a classic example of the techniques used to analyze recursive routines:
we have to write a recurrence relation for the running time. We will assume that N
is a power of 2, so that we always split into even halves. For N = 1,:the time to
mergesort is constant, which we will denote by 1. Otherwise, the time to mergesort
N numbers is equal to the time to do two recursive mergesorts of size N/2, plus the
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/* Lpos = start of left half, Rpos = start of right half */

void
Merge( ElementType A[ ], ElementType TmpArray[ ],
int Lpos, int Rpos, int RightEnd )

{ .
int i, LeftEnd, NumElements, TmpPos;
LeftEnd = Rpos - 1;
TmpPos = Lpos;
NumElements = RightEnd - Lpos + 1;
/* main loop */ ' _
while( Lpos <= LeftEnd && Rpos <= RightEnd )
if( A[ Lpos ] <= A[ Rpos ] )
TmpArray[ TmpPos++ ] = A[ Lpos++ 1;
else
TmpArray[ TmpPos++ ] = A[ Rpos++ J;
while( Lpos <= LeftEnd ) /* Copy rest of first half */
TmpArray[ TmpPos++ ] = A[ Lpos++ 1;
while( Rpos <= RightEnd ) /* Copy rest of second half */
TmpArray[ TmpPos++ ] = A[ Rpos++ ]; ’
/* Copy TmpArray back */
for( i = 0; i < NumElements; i++, RightEnd-- )
A[ RightEnd ] = TmpArray[ RightEnd ];
}

Figure 6.10 Merge routine

time to merge, which is linear. The following equations say this exactly:
T =1
T(N) =2T(N/2)+ N

This is a standard recurrence relation, which can be solved several ways. We will
show two methods. The first idea is to divide the recurrence relation through by N.
The reason for doing this will become apparent soon, This yields

T(N) _ T(N/2)
N - nNp 1!

o4

This equation is valid for any N that is a power of 2, so we may also write

T(N/2) _ T(N/4) ‘1
N2 ~ N/4
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and
T(N/4) _ T(N/8) i1
N/4 =~ NI/8
T(2) T(1)
— -1 *!

Now add up all the equations. This means that we add all'of the terms on the
left-hand side and set the result equal to the sum of all of the terms on the right-hand
side. Observe that the term T (N/2)/(N/2)appears on both sides and thus cancels. In
fact, virtually all the terms appear on both sides and cancel. ThlS is called telescoping
a sum. After everything is added, the final result is
TIN) _T(1)
N 1

because all of the other terms cancel and there are log N equations, and so all the 1s
at the end of these equations add up to log N. Multlplymg through by N gives the
final answer.

T(N) = NlogN +N = O(NlogN)
Notice that if we did not divide through by N at the start of the solutions, the
sum would not telescope. This is why it was necessary to divide through by N.

An alternative method is to substitute the recurrence relation continually on the
right-hand side. We have

T(N) =2T(N2)+ N
Since we can substitute N/2 into the main equation,
2T(N/2) = 2(2(T(N/4)) + N/2) = 4T(N/4)+ N
we have
T(N) = 4T(N/4) + 2N
Again, by substituting N/4 into the main equation, we see that
4T(N/4) = 42T (N/8)) + N/4) = 8T(N/8) + N
So we have
T(N) = 8T(N/8) + 3N
Continuing in this manner, we obtain
T(N) = 2*T(N/2Y) + k- N
Using k= log N, we obtain
T(N)=NT(1)+ NlogN = NlogN + N

The choice of which method to use is a matter of taste. The first method tends to
produce scrap work that fits better on a standard, 81 1 X 11 sheet of paper, leading to
fewer mathematical errors, but it requires a certain amount of experience to apply.
The second method is more of a brute force approach.

+ logN
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Recall that we have assumed N = 2%. The analysis can be refined to handle
cases when N is not a power of 2. The answer turns out to be almost identical (this
is usually the case).

Although mergesort’s running time is O(N logN), it is hardly ever used for
main memory sorts. The main problem is that merging two sorted lists requires
linear extra memory, and the additional work spent copying to the temporary
array and back, throughout the algorithm, has the effect of slowing down the sort
considerably. This copying can be avéided by judiciously switching the roles of A
and TmpArray at alternate levels of the recursion. A variant of mergesort can also be
implemented nonrecursively (Exercise 6.14), but even so, for serious internal sorting
applications, the algorithm. of choice is quicksort, which is described in the next
section. Nevertheless, as we will see later in this chapter, the merging routine is the
cornerstone of most external sorting algorithms.

6.7. Quicksort

As its name implies, quicksort is the fastest known sorting algorithm in practice. Its
average running time is O(N log N ). It is very fast, mainly due to a very tight and
highly optimized inner loop. It has O(N?2) worst-case performance, but this can be
made exponentially unlikely with a little effort. The quicksort algorithm is simple
to understand and prove correct, although for many years it had the reputation
of being an algorithm that could in theory be highly optimized but in practice
was impossible to code correctly. Like mergesort, quicksort is a divide-and-conquer
recursive algorithm. The basic algorithm to sort an array S consists of the following
four easy steps:

1. If the number of elements in S is 0 or 1, then return.
2. Pick any element v in S. This is called the pivot.

3. Partition S — {v} (the remaining elements in §) into two disjoint groups:
S1={xeES-{x =vhand S, ={x&S§ - {v}ix = v}

4. Return {quicksort(S;) followed by v followed by quicksort(S,}}.

Since the partition step ambiguously describes what to do with elements equal
to the pivot, this becomes a design decision. Part of a good implementation is
handling this case-as efficiently as possible. Intuitively, we would hope that about
half the keys that are equal to the pivot go into S; and the other half into S5, much
as we like binary search trees to be balanced.

Figure 6.11 shows the action of quicksort on a set of numbers. The pivot is cho-
sen (by chance) to be 65. The remaining elements in the set are partitioned into two
smaller sets. Recursively sorting the set of smaller numbers yields 0,13, 26, 31, 43, 57
(by rule 3 of recursion). The set of large numbers is similarly sorted. The sorted
arrangement of the entire set is then trivially obtained. :

It should be clear that this algorithm works, but it is not clear why it is

any faster than mergesort. Like mergesort, it recursively solves two subproblems
and requires linear additional work (step 3), but, unlike mergesort, the subprob-
lems are not guaranteed to be of equal size, which is potentially bad. The reason

that quicksort is faster is that the partitioning step can actually be performed-in place
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select pivot

partition

quicksort small quicksort large
Y )
N P

0 13 26 31 43 57 65 75 81 92

Figure 6.11 The steps of quicksort illustrated by example

and very efficiently. This efficiency more than makes up for the lack of equal-sized
recursive calls.

The algorithm as described so far lacks quite a few details, which we now fill in.
There are many ways to implement steps 2 and 3; the method presented here is the
result of extensive analysis and empirical study and represents a very efficient way
to implement quicksort. Even the slightest deviations from this method can cause
surprisingly bad results.

6.7.1. Picking the Pivot

Although the algorithm as described works no matter which element is chosen as
pivot, some choices are obviously better than others. :
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A Wrong Way

The popular, uninformed choice is to use the first element as the pivot. This is
acceptable if the input is random, but if the input is presorted or in reverse order,
then the pivot provides a poor partition, because either all the elements go into Sy
or they go into S;. Worse, this happens consistently throughout the recursive calls.
The practical effect is that if the first element is used as the pivot and the input
is presorted, then quicksort will take quadratic time to do essentially nothing at
all, which is quite embarrassing. Moreover, presorted input (or input with a large
presorted section) is quite frequent, so using the first element as pivot is an absolutely
borrible idea and should be discarded immediately. An alternative is choosing the
larger of the first two distinct keys as pivot, but this has the same bad properties as
merely choosing the first key. Do not use that pivoting strategy either.

A Safe Maneuver

A safe course is merely to choose the pivot randomly. This strategy is generally
perfectly safe, unless the random number generator has a flaw (which is not as
uncommon as you might think), since it is very unlikely that a random pivot would
consistently provide a poor partition. On the other hand, random number generation
is generally an expensive commodity and does not reduce the average running time
of the rest of the algorithm at all.

Median-of-Three Partitioning

The median of a group of N numbers is the [N/2] th largest number. The best choice
of pivot would be the median of the array. Unfortunately, this is hard to calculate
and would slow down quicksort considerably. A good estimate can be obtained
by picking three elements randomly and using the median of these three as pivot.
The randomness turns out not to help much, so the common course is to use as
pivot the median of the left, right, and center elements. For instance, with input
8,1,4,9,6,3,5,2,7,0 as before, the left element is 8, the right element is 0 and the
center (in position |Left + Right)/2]) element is 6. Thus, the pivot would be v = 6.
Using median-of-three partitioning clearly eliminates the bad case for sorted input
(the partitions become equal in this case) and actually reduces the running time of
quicksort by about 5 percent.

6.7.2. Partitioning Strategy

There are several partitioning strategies used in practice, but the one described here
is known to give good results. It is very easy, as we shall see, to do this wrong or
inefficiently, but it is safe to use a known method. The first step is to get the pivot
element out of the way by swapping it with the last element. i starts at the first
element and j starts at the next-to-last element. If the original input was the same as
before, the following figure shows the current situation.
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For now we will assume that all the elements are distinct. Later on we ‘will worry
about what to do in the presence of duplicates. As a limniting case, our algorithm
must do the proper thing if all of the elements are 1dent1cal Itis surprlsmg'how easy
it is to do the wrong thing.

What our partitioning stage wants to do is to move all the ‘small elements to
the left part of the array and all the large elements to the nght part “Small” and
“large” are, of course, relative to the pivot.

While i is to the left of j, we move i right, skipping over elements that are smalier
than the pivot. We move j left, sklppmg over elements that are larger than the pivot.
When i and j have stopped, i is pointing at a large element and j is pointing at a
small element. If i is to the left of f, those elements are swapped. The effect is to push
a large element to the right and a small element to the left. In the example above, i
would not move and j would slide over one place. The situation.is as follows.

We then swap the elements pointed to by i and j and repeat the pfocess until §
and j cross.

i

After First Swap
2 1 4 9 0 3 5 8 7 6
1 7
d j
Before Second Swap "
2 1 4 9 0 3 5 8 7 6
) )
i i
After Second Swap
2 1 4 5 0 3 9
1 -1

i
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Before Third Swap
2 1 4 5 0 3 9 8 7 6
Tt
j f

At this stage, i and j have crossed, so no swap is performed. The final part of the
partitioning is to swap the pivot element with the element pointed to by i.

After Swap with Pivot
2 1 4 5 0 3 6 8 7 9
7 1
i pivot

When the pivot is swapped with 7 in the last step, we know that every element
in a position P < 7 must be small. This is because either position P contained a small
element to start with, or the large element originally in position P was replaced
during a swap. A similar argument shows that elements in positions P > i must be
large.

One important detail we must consider is how to handle keys that are equal to
the pivot. The questions are whether or not i should stop when it sees a key equal
to the pivot and whether or not j should stop when it sees a key equal to the pivot.
Intuitively, { and j ought to do the same thing, since otherwise the partitioning step
is biased. For instance, if i stops and j does not, then all keys that are equal to the
pivot will wind up in S,.

To get an idea of what might be good, we consider the case where all the keys
in the array are identical. If both i and j stop, there will be many swaps between
identical elements. Although this seems useless, the positive effect is that i and ; will
cross in the middle, so when the pivot is replaced, the partition creates two nearly
equal subarrays. The mergesort analysis tells us that the total running time would
then be O(N log N).

If neither 7 nor j stops, and code is present to prevent them from running off the
end of the array, no swaps will be performed. Although this seems good, a correct
implementation would then swap the pivot into the last spot that i touched, which
would be the next-to-last position (or last, depending on the exact implementation).
This would create very uneven subarrays. If all the keys are identical, the running
time is O(N2). The effect is the same as using the first element as a pivot for
presorted input. It takes quadratic time to do nothing!

Thus, we find that it is better to do the unnecessary swaps and create even
subarrays than to risk wildly uneven subarrays. Therefore, we will have both i and j
stop if they encounter a key equal to the pivot. This turns out to be the only one of
the four possibilities that does not take quadratic time for this input.

At first glance it may seem that worrying about an array of identical elements
is silly. After all, why would anyone want to sort 5,000 identical elements? However,
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recall that quicksort is recursive. Suppose there are 100,000 elements, of which
5,000 are identical. Eventually, quicksort will make the recursive call on only these
5,000 elements. Then it really will be important to make sure that 5,000 identical
elements can be sorted efficiently.

6.7.3. Small Arrays

For very small arrays (N = 20), quicksort does not perform as well as insertion
sort. Furthermore, because quicksort is recursive, these cases will occur frequently.
A common solution is not to use quicksort recursively for small arrays, but instead
use a sorting algorithm that is efficient for small arrays, such as insertion sort. Using
this strategy can actually save about 15 percent in the running time (over doing no
cutoff at all). A good cutoff range is N = 10, although any cutoff between 5 and
20 is likely to produce similar results. This also saves nasty degenerate cases, such
as taking the median of three elements when there are only one or two.

6.7.4. Actual Quicksort Routines

The driver for quicksort is shown in Figure 6.12. _

The general form of the routines will be to pass the array and the range of the
array (Left and Right) to be sorted. The first routine to deal with is pivot selection.
The easiest way to do this is to sort A[Left], A[Right], and A[Center] in place. This
has the extra advantage that the smallest of the three winds up in A[Left}, which is
where the partitioning step would put it anyway. The largest winds up in A[Right],
which is also the correct place, since it is larger than the pivot. Therefore, we can
place the pivot in A[Right — 1] and initialize 7 and j to Left + 1 and Right — 2
in the partition phase. Yet another benefit is that because A[Left] is smaller than
the pivot, it will act as a sentinel for j. Thus, we do not need to worry about
j running past the end. Since i will stop on keys equal to the pivot, storing the
pivot in A[Right — 1] provides a sentinel for i. The code in Figure 6.13 does the
median-of-three partitioning with all the side effects described. It may seem that it
is only slightly inefficient to compute the pivot by a method that does not actually
sort A[Left], A[Center], and A[Right], but, surprisingly, this produces bad results
(see Exercise 6.38). oo

The real heart of the quicksort routine is in Figure 6.14. It includes the
partitioning and recursive calls. There are several things worth noting in this

Figure 6.12 Driver for quicksort

void
Quicksort( ElementType A[ ], int N )
{

}

Qsort( A, O, N - 1);
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/* Return median of Left, Center, and Right */
/* Oorder these and hide the pivot */

ElementType ] )
Median3( ElementType A[ ], int Left, int Right )

{
int Center = ( Left + Right ) / 2;

if( A[ Left ] > A[ Center ] )

Swap( &A[ Left ], &A[ Center ] );
if( AL Left ] > A[ Right ] )

Swap( &A[ Left 1, &A[ Right ] );
if( A[ Center ] > A[ Right ] )

Swap( &A[ Center ], &A[ Right ] );

/* Invariant: A[ Left ] <= A[ Center ] <= A[ Right ] */

Swap( &A[ Center 1, &A[ Right - 1] ); /* Hide pivot */
return A[ Right - 1 ]; /* Return pivot */

}

Figure 6.13 Code to perform median-of-three partitioning

implementation. Line 3 initializes i and j to 1 past their correct values, so that
there are no special cases to consider. This initialization depends on the fact that
median-of-three partitioning has some side effects; this program will not work if you
try to use it without change with a simple pivoting strategy, because i and j start in
the wrong place and there is no longer a sentinel for j.

The Swap at line 8 is sometimes written explicitly, for speed purposes. For the
algorithm to be fast, it is necessary to force the compiler to compile this code in-line.
Many compilers will do this automatically, if asked to, but for those that do not the
difference can be significant.

Finally, lines 5 and 6 show why quicksort is so fast. The inner loop of the
algorithm consists of an increment/decrement (by 1, which is fast), a test, and a
jump. There is no extra juggling as there is in mergesort. This code is still surprisingly
tricky. It is tempting to replace lines 3 through 9 with the statements in Figure 6.15.
This does not work, because there would be an infinite loop if A[i] = A[j] = Pivot.

6.7.5. Analysis of Quicksort

Like mergesort, quicksort is recursive, and hence, its analysis requires solving a
recurrence formula. We will do the analysis for a quicksort, assuming a random
pivot (no median-of-three partitioning) and no cutoff for small files. We will take
T(0) = T(1) = 1, as in mergesort. The running time of quicksort is equal to the
running time of the two recursive calls plus the linear time spent in the partition (the
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/*

/*
/-k
/-k
/*
/*
/*
/*

/*

1*/

2%/
3%/
a*/

5%/
6*/
7%/
8*/

9%/

/*10*/

/*11*/
/*12*/

/*¥13*/

#define Cutoff ( 3 )

void

Qsort( ElementType A[ ], int Left, int Right )

{

}

int
Elem
if(
{

}

else

i, 3
entType Pivot;

Left + Cutoff <= Right )

Pivot = Median3( A, Left, Right );
i = Left; j = Right - 1;
for(; ;)
{
while( A[ ++i ] < Pivot ){}
while( A[ --j ] > Pivot ){}
if(1<3)
Swap( &A[ i ], &AL j 1 );
else
break;

}
Swap( &A[ i ], &A[ Right - 1] ); /* Restore pivot */

Qsort( A, Left, i - 1);
Qsort( A, i + 1, Right );

/* Do an insertion sort on the subarray */
InsertionSort( A + Left, Right - Left + 1 );

Figure 6.14 Main quicksort routine

/;\-
/%
/¥
/*
/*
/*

/*

3*/

5%/
6%/
7*/
8*/

9%/

i = Left + 1; j = Right - 2;
ax/ for( ; ;) '

{

}

whil
whil
if(

else

e( A[ i ] < Pivot ) i++;
eC ALl j ] > Pivot ) j--;
i<j)

Swap( &AL i 1, &AL j 1 )

break;

Figure 6.15 A small change to quicksort, which breaks
the algorithm



6.7. QUICKSORT

pivot selection takes only constant time). This gives the basic quicksort relation
T(N)=T(@#)+T(N —i—1)+¢cN (6.1)

where i = |S;| is the number of elements in S;. We will look at three cases.

Worst-Case Analysis

The pivot is the smallest element, all the time. Theni = 0 and if we ignore T(0) = 1,
which is insignificant, the recurrence is

T(N)=T(N—-1)+cN, N>1 (6.2)
We telescope, using Equation (7.2) repeatedly. Thus ‘
T(N-1)=T(N-2)+c¢(N —1) (6.3)
T(N—-2)=T(N—-3)+¢(N—2) (6.4)
T(2) =T(1)+ ¢(2) (6.5)
Adding up all these equations yields

N
T(N) = T(1)+c> i = O(N?) (6.6)

i=2

as claimed earlier.

Best-Case Analysis

In the best case, the pivot is in the middle. To simplify the math, we assume that the
two subarrays are each exactly half the size of the original, and although this gives
a slight overestimate, this is acceptable because we are only interested in a Big-Oh
answer.

T(N) = 2T(N/2) + cN (6.7)
Divide both sides of Equation (6.7) by N.
T(N) T(N/2)
= +c

N N/2 (68)
We will telescope using this equation.
T(N/2)  T(N/4) +
N2 T TN C° (69)
T(NM) _ T(N)
N/A ~ "N € (6.10)
T2) T(@)

T T T (6.11)
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We add all the equations from (6.7) to (6.11) and note that there are log N of them:

N _ 1) 6.12

T— = 1 + ClOgN ( )
which yields

T(N) = cNlogN + N = O(N logN) (6.13)

Notice that this is the exact same analysis as mergesort, hence we get the same
answer.

Average-Case Analysis

This is the most difficult part. For the average case, we assume that each of the
file sizes for §1 is equally likely, and hence has probability 1/N. This assumption is
actually valid for our pivoting and partitioning strategy, but it is not valid for some
others. Partitioning strategies that do not preserve the randomness of the subfiles
cannot use this analysis. Interestingly, these strategies seem to result in programs
that take longer to run in practice.

W1th this assumption, the average value of T ({), and hence T(N —i — 1), is
(1/N)Z,‘,(J T(j). Equation (6.1) then becomes

N-1
> T(f)
i=0

If Equation (6.14) is multiplied by N, it becomes

T(N) = — +cN (6.14)

N-1 '
-NT(N)=2[Z T(j) |+eN* (6.15)

j=0

We need to remove the summation sign to simplify matters. We note that we can
telescope with one more equation.

Z T(j)

If we subtract (6.16) from (6.15), we obtain

(N-1DT(N-1)=2 +¢(N — 1) (6.16)

NT(N)—(N—-1)T(N —1) =2T(N —-1)+2¢N —¢ (6.17)
We rearrange terms and drop the insignificant —c on the right, obtaining

NT(N) = (N + )T(N = 1) + 2N (6.18)
We now have a formula for T(N) in terms of T(N — 1) only. Again the idea is

to telescope, but Equation (6. 18) is in the wrong form. Divide Equation (6.18) by
N(N + 1)

T(N) T(N-1) 2¢
N+1_ — N TN+1 (6.19)
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Now we can telescope.
TN —1) _ T(N —2) + _Z_E (6.20)
N N -1 N
T(N —2) _ T(N — 3) + 2c (6.21)
N -1 N-2 N-1
T2)  T() , 2
—_ = =+ = 6.22
3 2 + 3 ( )
Adding Equations (6.19) through (6.22) yields
T(N) _ T(1) T 3
N+1 2 +2‘i§i (6.23)

The sum is about log, (N +1)+y— %, where y = 0.577 is known as Euler’s constant,
§0

T(N) _ ' , ‘
| Nil - O(logN) (6.24)
And so
T(N) = O(NlogN) (6.25)

Although this analysis seems complicated, it really is not—the steps are natural
once you have seen some recurrence relations. The analysis can actually be taken
further. The highly optimized version that was described above has also been
analyzed, and this result gets extremely difficult, involving complicated recurrences
and advanced mathematics. The effect of equal keys has also been analyzed in detail,
and it turns out that the code presented does the right thing.

6.7.6. A Linear-Expected-Time Algorithm for Selection

Quicksort can be modified to solve the selection problem, which we have seen in
Chapters 1 and 5. Recall that by using a priority queue, we can find the kth largest
(ot smallest) element in O(N + klog N). For the special case of finding the median,
this gives an O(N log N) algorithm.

Since we can sort the array in O(N log N) time, one might expect to obtain a
better time bound for selection. The algorithm we present to find the kth smallest
element in a set S is almost identical to quicksort. In fact, the first three steps are the
same. We will call this algorithm guickselect. Let |S;| denote the number of elements
in S;. The steps of quickselect are

1. If|S| = 1, then £ = 1 and return the element in S as the answer. If a cutoff
for small arrays is being used and |S| = CUTOFF, then sort $ and return
the kth smallest element.

2. Pick a pivot element, v € S.
3. Partition S — {v} into §; and S,, as was done with quicksort.
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4. If k < |S1], then the kth smallest element must be in §;. In this case, return

quickselect (S1, k). If k = 1 + |S1], then the pivot is the kth smallest element
and we can return it as the answer. Otherwise, the kth smallest element lies
in 52, and it is the (& — |S1] — 1)st smallest element in §,. We make a recursive
call and return quickselect (Sz, & — |S1| — 1).

In contrast to quicksort, quickselect makes only one recursive call instead of
two. The worst case of quickselect is identical to that of quicksort and is O(N %),
Intuitively, this is because quicksort’s worst case is when one of §; and §; is empty;
thus, quickselect is not really saving a recursive call. The average running time,
however,.is O(N ). The analysis is similar to quicksort’s and is left as an exercise.

The implementation of quickselect is even simpler than the abstract description
might imply. The code to do this is shown in Figure 6.16. When the algorithm

Figure 6.16 Main quickselect routine

/*

/*
/*
/*
/'k
/*
/*
/*

/*

1%/

2/
3%/
4/

5%/
6%/
7%/

8*/

9%/

/*10*/

/*11%/
/*12%/
/*¥13*/
/%14%/

/*¥15%/

/* Places the kth smallest element in the kth position */
/* Because arrays start at 0, this will be index k-1 */

void

Qselect( ElementType A[ ], int k, int Left, int Right )

{

int
Elem
if(
{

}

else

i, 3
entType Pivot;

Left + Cutoff <= Right )

Pivot = Median3( A, Left, Right );
i = Left; j = Right - 1;
for( ; ;)
{
while( A[ ++1 ] < Pivot ){ }
while( A[ --j ] > Pivot ){ }
if(i<3)
Swap( &AL 7 1, &AL j 1);
else
break;

}
Swap( &A[ i 1, &A[ Right - 1] ); /* Restore pivot */

ifC k <= 1)

Qselect( A, k, Left, i - 1);
else if(Ck>1+1)

Qselect( A, k, i + 1, Right );

/* Do an insertion sort on the subarray */
InsertionSort( A + Left, Right - Left + 1 );
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terminates, the kth smallest element is in position k. This destroys the original
ordering; if this is not desirable, then a copy must be made.

Using a median-of-three pivoting strategy makes the chance of the worst case
occurring almost negligible. By carefully choosing the pivot, however, we can
eliminate the quadratic worst case and ensure an O(N) algorithm. The overhead
involved in doing this is considerable, so the resulting algorithm is mostly of
theoretical interest. In Chapter 10, we will examine the linear-time worst-case
algorithm for selection, and we shall also see an interesting technique of choosing
the pivot that results in a somewhat faster selection algorithm in practice.

6.8. Sorting Large Structures

Throughout our discussion of sorting, we have assumed that the elements to be
sorted are simply integers. Frequently, we need to sort large structures by a certain
key. For instance, we might have payroll records, with each record consisting of
a name, address, phone number, financial information such as salary, and tax
information. We might want to sort this information by one particular field, such as
the name. For all of our algorithms, the fundamental operation is the swap, but here
swapping two structures can be a very expensive operation, because the structures
are potentially large. If this is the case, a practical solution is to have the input array
contain pointers to the structures. We sort by comparing the keys the pointers point
to, swapping pointers when necessary. This means that all the data movement is
essentially the same as if we were sorting integers. This is known as indirect sorting;
we can use this technique for most of the data structures we have described. Even
if in some applications we have to physically rearrange these structures, we may
first perform an indirect sort and then physically rearrange in linear time using
some extra space for one temporary structure. This justifies our assumption that
complex structures can be handled without tremendous loss of efficiency.

There are many indirect sorting method. A simple one is called table sort in
which an integer index table T is set up for a given array, A, of records. Stored
in T[i] is the index of the structure with the ith smallest key. That is, after
sorting we will have A[T[0]]. Key =A[T[1]].Key <...=<A[T[N —1]].Key. Before
sorting, the table is initialized as T[i] = i fori = 0, ..., N —1, meaning that the
ith record is at the ith position. For whichever method we use to sort A, if
Ali] and A[}] ate supposed to be swapped, we shall swap T[;] and T[] instead
and keep A unchanged. At last a sorted set of records can be obtained
according to a permutation of the indices { 0, 1,..., N—1} specified by T.

In case we must physically rearrange the large records into sorted ordet, an
interesting mathematical theorem can be applied: Every permutation is snade
up of disjoint cycle. The cycle for any element i consists of 7, Tll[i], .. TH[4],
whete T/[i] = T[T"{i]], T°(i] = i, and T¥[i] =i. For instance, 10 records with
keys 75, 19, 59, 3, 61, 8, 36, 10, 25, 18 will be sorted with table as follows:
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Record Ao Al Az A; A4 A5 Ag A Ag Aq
Key 75 19 59 3 61 8 36 10 25 18
Table 3 5 7 9 1 8 6 2 4 0

The permutation of the indices {0, 1, ..., N— 1} specified by T now con-
sists of 4 disjoint cycles:

Cyclel: [ 0, T'[0]=3, T’[0]=T[3]=9, T’[0}=T[9]=0

Cycle 2: 1, T'[)=5 T2(1]=T[5]=8, T’[1]=T[8]=4, T*[1]=T[4]=1
Cycle 3: 2, T'[2]=7, T'[2)=T[7]=2

Cycle 4: 6, T'[6]=6

To physically rearrange the records into { As, As, A1, As, Ay, f“s Aq, Ay,
A4, Ao }, we can use an extra structure space to process in linear time by con-
sidering the disjoint cycles one by one. The 4th cycle is trivial and no rearrange-
ment is necessary for As. For a nontrivial cycle such as the first one, we move
the first record A0Q to a temporary position Tmmp , then move A; to A, , Ay to
A, and finally Tmp (which is AO) to A9 so that every record in the first cycle is
at its final position. Notice that when coding we must be able to recognize the
end of a cycle. A solution is to set T[i]=  for each record that has been
handled. Therefore after rearranging the first cycle the situation is as the
follows:

Record A3 Al Az A9 A4 As A6 A-/ Ag Ao
Key 3 19 59 18 61 8 36 10 25 75
Table 0 5 7 3 1 8 6 -2 4 9

If a cycle contains k records, then rearranging them requires k +1 move-
ments. The worst case is when each cycle contains 2 records only, and there are
[N/ 2] cycles and hence requires [3N / 2] data movements.

6.9. A General Lower Bound for Sorting

Although we have O(N log N) algorithms for sorting, it is not clear that this is as
good as we can do. In this section, we prove that any algorithm for sorting that uses
only comparisons requires {1(N log N) comparisons (and hence time) in the worst
case, so that mergesort and heapsort are optimal to within a constant factor. The
proof can be extended to show that (N log N) comparisons are required, even on
averige, for any sorting algorithm that uses only comparisons, which means that
quicksort is optimal on average to within a constant factor.

Specifically, we will prove the following result: Any sorting algorithm that uses
only comparisons requires [log(N!)] comparisons in the worst case and log(N'!)
comparisons on average. We will assume that all N elements are distinct, since any
sorting algorithm must work for this case.
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6.9.1. Decision Trees

A decision tree is an abstraction used to prove lower bounds. In our context,
a decision tree is a binary tree. Each node represents a set of possible orderings,

a<b<c
a<c<b
b<cax<c
b«c<a
c<a<b
c<b<a
a<b : b<a
a<b<c b<ax<c
a<c<b b<c<a
c<a<b c<b<a
@ ®
a<c c<a b<c c<b
b<a<c c<b<a
o b<c<a o
a<c c<a

|b<a<;] [b<c<ﬂ

Figure 6.17 A decision tree for three-element sort

consistent with comparisons that have been made, among the elements. The results
of the comparisons are the tree edges. ,

The decision tree in Figure 6.17 represents an algorithm that sorts the three
elements a, b, and c. The initial state of the algorithm is at the root. (We will use
the terms state and node interchangeably.) No comparisons have been done, so all
orderings are legal. The first comparison that this particular algorithm performs
compares a and b. The two results lead to two possible states. If a < b, then only
three possibilities remain. If the algorithm reaches node 2, then it will compare 4
and ¢. Other algorithms might do different things; a different algorithm would have
a different decision tree. If 2 > ¢, the algorithm enters state 5. Since there is only
one ordering that is consistent, the algorithm can terminate and report that it has
completed the sort. If 2 < ¢, the algorithm cannot do this, because there are two
possible orderings and it cannot possibly be sure which is correct. In this case, the
algorithm will require one more comparison.
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Every algorithm that sorts by using only comparisons can be represented‘ by a
decision tree. Of course, it is only feasible to draw the tree for extremely small input
sizes. The number of comparisons used by the sorting algorithm is egual to the
depth of the deepest leaf. In our case, this algorithm uses three comparisons in the
worst case. The average number of comparisons used is equal to the average depth
of the leaves. Since a decision tree is large, it follows that there must be some long
paths. To prove the lower bounds, all that needs to be shown are some basic tree
properties.

LEMMA 6.1.
Let T be a binary tree of depth d. Then T bas at most 22 leaves.

PROOF: .

The proof is by induction. If d = 0, then there is at most one leaf, so the basis
is true. Otherwise, we have a root, which cannot be a leaf, and a left and right
subtree, each of depth at most d — 1. By the induction hypothesis, they can each
have at most 2471 leaves, giving a total of at most 29 leaves. This proves the
lemma. '

LEMMA 6.2.
A binary tree with L leaves must have depth at least [log L).

PROOF:
Immediate from the preceding lemma.

THEOREM 6.6.

Any sorting algorithm that uses only comparisons between elements requires at
least [log(N )] comparisons in the worst case.

PROOF:
A decision tree to sort N elements must have N! leaves. The theorem follows
from the preceding lemma.

THEOREM 6.7.

Any sorting algorithm that uses only comparisons between elements requires
Q(N log N) comparisons.

PROOF:
From the previous theorem, log(N!) comparisons are required.

log(N!) = log(N(N — 1)}(N —2)---(2)(1))
= logN + log(N — 1) + log(N —2) + +-- + log2 + log 1
= logN + log(N — 1) + log(N —2) + -+ + log N/2
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=72 %72

N N
= ?logN 5
= Q(N logN)

This type of lower-bound argument, when used to prove a worst-case result,
is sometimes known as an information-theoretic lower bound. The general theorem
says that if there are P different possible cases to distinguish, and the questions are
of the form YES/NO, then [log P] questions are always required in some case by
any algorithm to solve the problem. It is possible to prove a similar result for the
average-case running time of any comparison-based sorting algorithm. This result is
implied by the following lemma, which is left as an exercise: Any binary tree with L
leaves has an average depth of at least log L.

6.10. Bucket Sort and Radix Sort

Although we proved in the previous section that any general sorting algorithm that
uses only comparisons requires {3(N log N) time in the worst case, it is still possible
to sort in linear time in some special cases.

If we have N integers in the range 1 to M (or 0 to M — 1), we can use this
information to obtain a fast sort known as bucket sort. We keep an array called
Count, of size M, which is initialized to zero. Thus, Count has M cells (or buckets),
which are initially empty. When A; is read, increment (by 1) Count[A;]. After all the
input is read, scan the Count array, printing out a representation of the sorted list.
This algorithm takes O(M + N); the proof is left as an exercise. If M = O(N), then
bucket sort is O(N).

Radix sort is a generalization of bucket sort, and is sometimes known as card
sort, because it was used, until the advent of modern computers, to sort old-style
punch cards.

The easiest way to see what happens is by example. Suppose we have 10
numbers, in the range 0 to 999, that we would like to sort. In general, this is N
numbers in the range 0 to N¥— 1 for some constant P, Obviously, we cannot use
bucket sort; there would be too many buckets. The trick is to use several passes
of bucket sort. The natural algorithm would be to bucket-sort by the most
significant “digit” (digit is taken to base N), then the next most significant, and
so on. That algorithm does not work, but if we perform bucket sorts by the least
significant “digit” first, then the algorithm works. Of course, more than one number
could fall into the same bucket and,unlike the original bucket sort, these numbers
could be different, so we keep them in a list. Notice that all the numbers could have
some digit in common, so if a simple array were used for the lists, each array
would have to be of size N, for a total space requirement of ®(N?2).
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The following example shows the action of radix sort on 10 numbers. The input
is 64, 8, 216, 512, 27, 729, 0, 1, 343, 125 (the first 10 cubes, arranged randomly).
The first step bucket-sorts by the least significant digit. In this case the math is in
base 10 (to make things simple), but do not assume this in general. The buckets are
as shown in Figure 6.18, so the list, sorted by least significant digit, is 0, 1, 512, 343,
64,125,216, 27, 8, 729. These are now sorted by the next least significant digit (the
tens digit here) (see Fig. 6.19). Pass 2 gives output 0, 1, 8, 512, 216, 125, 27, 729,
343, 64. This list is now sorted with respect to the two least significant digits. The
final pass, shown in Figure 6.20, bucket-sorts by the most significant digit. The final
listis 0, 1, 8, 27, 64, 125, 216, 343, 512, 729.

To see that the algorithm works, notice that the only possible failure would
occur if two numbers came out of the same bucket in the wrong order. But the
previous passes ensure that when several numbers enter a bucket, they enter in sorted
order. The running time is O(P(N + B)) where P is the number of passes, N is the
number of elements to sort, and B is the number of buckets. In our case, B = N.

Figure 6.18 Buckets after first step of radix sort

0 1 512 343 | 64 125 216 27 8 729

0 1 2 3 4 5 6 7 8 9

Figure 6.19 Buckets after the second pass of radix sort

8 729

1 216 27

0 512 125 343 64

0 1 2 3 4 5 6 7 8 9

Figure 6.20 Buckets after the last pass of radix sort

64
27

8

1

0 125 216 343 512 729

0 1 2 3 4 5 6 7 8 9
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In general, radix sort is for sorting structures that have several keys (or a key
can be partitioned into several keys) K° K',..., K", with K° being the most
significant key and K" the least. On comparing any pair of r-tuples, we say
(%0, %15+, Xn-1) = ( Yo, Y1se--, Yn-1) iff either x;=y, for all 0= i <7, or
xi=y for 0=<i=j and % < ¥j1 for some j< r-1. A list of records A,,
Ay, ..., An-1is lexically sorted with respect to the keys K° K',..., K™\ iff
(A,.Ko, ALK .., A,.K"l) =(A..1.K% Aa.KY,. ., Ai,l.K"l)for 0=<i<N-1The
approach illustrated by the previous example is known as an LSD (LeastSig
nificant Digit) sort. The other one called MSD (Most Significant Digit) sort is
to start sorting from the most significant digit.

As an example, we could sort all integers that are representable on a computer
(32 bits) by radix sort, if we did three passes over a bucket size of 211, This algorithm
would always be O(N) on this computer,

Although it seems that bucket sort and radix sort are violating the lower
bound, it turns out that they do not because they use a2 more powerful opera-
tion than simple comparisons. By incrementing the appropriate bucket, the
algorithms essentially perform an M-way comparison in unit time. This is
clearly not in the model for which the lower bound was proven.

These algorithms does, however, question the validity of the model used in proving
the lower bound. The mode! actually is a strong model, because a general-purpose
sorting algorithm cannot make assumptions about the type of input it can expect to
see, but must make decisions based on ordering information only. Naturally, if there
is extra information available, we should expect to find a more efficient algorithm,
since otherwise the extra information would be wasted.

Althoughbucket sort seems like much too trivial an algorithm to be useful, it
turns out that there are many cases where the input is only small integers, so that
using a method like quicksort is really overkill. On the other hand, although radix
sort can handle the integer sorting in linear time, it is probably still not as effi-
cient as some of the algorithms we have seen inthe previous sections, because
of the high constant involved. Remember that a factor of log N is not all that

high, and this algorithm would have to overhead of maintaining linked lists.

6.11. External Sorting

So far, all the algorithms we have examined require that the input fit into main
memory. There are, however, applications where the input is much too large to
fit into memory. This section will discuss external sorting algorithms, which are
designed to handle very large inputs.

6.11.1. Why We Need New Algorithms

Most of the internal sorting algorithms take advantage of the fact that memory is
directly addressable. Shellsort compares elements A[i] and A[i — #;] in one time unit.
Heapsort compares elements Aff] and A[f * 2 + 1] in one time unit, Quicksort, with
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median-of-three partitioning, requires comparing A[Left], A[Center], and A[Right]
in a constant number of time units. If the input is on a tape, then all these operations
lose their efficiency, since elements on a tape can only be accessed sequentially. Even
if the data is on a disk, there is still a practical loss of efficiency because of the delay
required to spin the disk and move the disk head.

To see how slow external accesses really are, create a random file that is large,
but not too big to fit in main memory. Read the file in and sort it using an efficient
algorithm. The time it takes to sort the input is certain to be insignificant compared
to the time to read the input, even though sorting is an O(N log N)) operation and
reading the input is only O(N).

6.11.2. Model for External Sorting

The wide variety of mass storage devices makes external sorting much more device-
dependent than internal sorting. The algorithms that we will consider work on tapes,
which are probably the most restrictive storage medium. Since access to an element
on tape is done by winding the tape to the correct location, tapes can be efficiently
accessed only in sequential order (in either direction).

We will assume that we have at least three tape drives to perform the sorting.
We need two drives to do an efficient sort; the third drive simplifies matters. If only
one tape drive is present, then we are in trouble: any algorithm will require Q(N?)
tape accesses.

6.11.3. The Simple Algorithm

The basic external sorting algorithm uses the Merge routine from mergesort. Suppose
we have four tapes, T,1, To2, Tp1, Tps, which are two input and two output tapes.
Depending on the point in the algorithm, the 4 and b tapes are either input tapes or
output tapes. Suppose the data is initially on T;;. Suppose further that the internal
memory can hold (and sort) M records at a time. A natural first step is to read M
records at a time from the input tape, sort the records internally, and then write the
sorted records alternately to T,; and T,. We will call each set of sorted records a
run. When this is done, we rewind all the tapes. Suppose we have the same input as
our example for Shellsort.

T 81 94 11 96 12 35 17 99 28 58 41 75 15
T2
Ti
Tz

If M = 3, then after the runs are constructed, the tapes will contain the data
indicated in the following figure.
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Tx

Tas

T 11 81 94 17 28 99 15
T2 12 35 96 41 S8 75

Now T,; and T, contain a group of runs. We take the first run from each
tape and merge them, writing the result, which is a run twice as long, onto T,.
Then we take the next run from each tape, merge these, and write the result to
T,2. We continue this process, alternating between T,; and T3, until either T,; or
Ty, is empty. At this point either both are empty or there is one run left. In the
latter case, we copy this run to the appropriate tape. We rewind all four tapes,
and repeat the same steps, this time using the a tapes as input and the b tapes as
-output. This will give runs of 4M. We continue the process until we get one run of
length N. ;

This algorithm will require [log(N/M )] passes, plus the initial run-constructing
pass. For instance, if we have 10 million records of 128 bytes each, and four
megabytes of internal memory, then the first pass will create 320 runs. We would
then need nine more passes to complete thie sort. Our example requxres [log 13/3]
more passes, which are shown in the followmg figure:

T 11 12 35 81 94 96 | 15
T | 17 28 41 58 75 99
Ty
Tea

Ta
T
T 11 12 17 28 35 41 58 75 81 94 96 99
Ty 15

Ta 11 12 15 17 28 35 41 58 75 81 949 96 99
Tz
Ty
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6.11.4. Multiway Merge

If we have extra tapes, then we can expect to reduce the number of passes required
to sort our input. We do this by extending the basic (two-way) merge to a k-way
merge.

Merging two runs is done by winding each input tape to the-beginning of
each run. Then the smaller element is found, placed on an output tape, and the
appropriate input tape is advanced. If there are k input tapes, this strategy works
the same way, the only difference being that it is slightly more complicated to find
the smallest of the k elements. We can find the smallest of these elements by using a
priority queue. To obtain the next element to write on the output tape, we perform a
DeleteMin operation. The appropriate input tape is advanced, and if the run on the
input tape is not yet completed, we Insert the new element into the priority queue.
Using the same example as before, we distribute the input onto the three tapes.

Ty ﬁ

T2
Ta
T 11 81 94 41 58 75
Tha 12 35 96 15

Tya 17 28 99

We then need two more passes of three-way merging to complete the sort.

T 11 12 17 28 35- 8 94 96 99
T 15 41 58 75

Tas
Tiy
Tpa

T 11 12 15 17 28 35 41 58 75 81 94 9 99
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After the initial run construction phase, the number of passes required using
k-way merging is [log,(N/M)], because the runs get k times as large in each pass.
For the example above, the formula is verified, since [logs(13/3)] = 2. If we have 10
tapes, then £ = 5, and our large example from the previous section would require
[logs 320] = 4 passes.

6.11.5. Polyphase Merge

The k-way merging strategy developed in the last section requires the use of 2k
tapes. This could be prohibitive for some applications. It is possible to get by with
only & + 1 tapes. As an example, we will show how to perform two-way merging
using only three tapes.

Suppose we have three tapes, T;, T3, and T3, and an input file on T; that will
produce 34 runs. One option is to put 17 runs on each of T; and T3. We could then
merge this result onto T;, obtaining one tape with 17 runs. The problem is that since
all the runs are on one tape, we must now put some of these runs on T to perform
another merge. The logical way to do this is to copy the first eight runs from T; onto
T and then perform the merge. This has the effect of adding an extra half pass for
every pass we do.

An alternative method is to split the original 34 runs unevenly. Suppose we put
21 runs on T; and 13 runs on T3. We would then merge 13 runs onto T before Tz
was empty. At this point, we could rewind Ty and T3, and merge Tj, with 13 runs,
and T, which has 8 runs, onto T3. We could then merge 8 runs until T> was empty,
which would leave 5 runs left on T; and 8 runs on T3. We could then merge T; and
T3, and so on. The following table shows the number of runs on each tape after each
pass.

Run After After After After After After After
Const. T3+T, T1+T, Ti+Tz3 T)+T; T14+T, T+T; T,+Ts

T 0 13 5 0 3 1 0 1
T 21 8 0 5 b 0 1 0
T 13 0 8 3 0 2 1 0

The original distribution of runs makes a great deal of difference. For instance,
if 22 runs are placed on Tz, with 12 on T3, then after the first merge, we obtain 12
runs on T; and 10 runs on T5. After another merge, there are 10 runs on T; and 2
runs on T3. At this point the going gets slow, because we can only merge two sets
of runs before Tj is exhausted. Then T; has 8 runs and T; has 2 runs. Again, we
can only merge two sets of runs, obtaining T; with 6 runs and T; with 2 runs. After
three more passes, T has two runs and the other tapes are empty. We must copy
one run to another tape, and then we can finish the merge.
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It turns out that the first distribution we gave is optimal. If the number of runs
is a Fibonacci number Fy, then the best way to distribute them is to split them into
two Fibonacci numbers Fx_1 and Fy—2. Otherwise, it is necessary to pad the tape
with dummy runs in order to get the number of runs up to a Fibonacci number. We
leave the details of how to place the initial set of runs on the tapes as an exercise.

We can extend this to a k-way merge, in which case we need kth order Fibonacci
numbers for the distribution, where the kth order Fibonacci number is defined as
FW(N) = FO(N —1) + FO(N —2) + -+ + F®(N — k), with the appropriate initial
conditions F®O(N) = 0,0 = N < k- 2,F¥(k-1) = 1.

6.11.6. Replacement Selection

The last item we will consider is construction of the runs. The strategy we have used
so far is the simplest possible: We read as many records as possible and sort them,
writing the result to some tape. This seems like the best approach possible, until one
realizes that as soon as the first record is written to an output tape, the memory it
used becomes available for another record. If the next record on the input tape is
larger than the record we have just output, then it can be included in the run.

Using this observation, we can give an algorithm for producing runs. This
technique is commonly referred to as replacement selection. Initially, M records are
read into memory and placed in a priority queue. We perform a DeleteMin, writing
the smallest record to the output tape. We read the next record from the input tape.
If it is larger than the record we have just written, we can add it to the priority queue.
Otherwise, it cannot go into the current run. Since the priority queue is smaller by
one element, we can store this new element in the dead space of the priority queue
until the run is completed and use the element for the next run. Storing an element
in the dead space is similar to what is done in heapsort. We continue doing this
until the size of the priority queue is zero, at which point the run is over. We start a
new run by building a new priority queue, using all the elements in the dead space.
Figure 6.21 shows the run construction for the small example we have been using,
with M = 3. Dead elements are indicated by an asterisk.

In this example, replacement selection produces only three runs, compared with
the five runs obtained by sorting. Because of this, a three-way merge finishes in one
pass instead of two. If the input is randomly distributed, replacement selection can
be shown to produce runs of average length 2M . For our large example, we would
expect 160 runs instead of 3 0 runs, so a five-way merge would require four passes.
In this case, we have not saved a pass, although we might if we get lucky and have
125 runs or less. Since external sorts take so long, every pass saved can make a
significant difference in the running time.

As we have seen, it is possible for replacement selection to do no better than
the standard algorithm. However, the input is frequently sorted or nearly sorted to
start with, in which case replacement selection produces only a few very long runs.
This kind of input is common for external sorts and makes replacement selection
extremely valuable.



SUMMARY
Figure 6.21 Example of run construction
3 Elements In Heap Array Output Next Element Read
HO] H[1]  H[]
Run 1 11 94 81 11 96
81 94 9 81 , 12*
94 96 12* 94 35*
96 35* 12* 96 17*
17* 35* 12* End of Run. Rebuild Heap
Run 2 12 35 17 12 99
17 35 99 17 28
28 99 35 28 58
35 99 58 35 41
41 99 58 41 15+
58 99 15* 58 end of tape
99 15* 99
15* End of Run. Rebuild Heap
Run 3 15 15

Summary

For most general internal sorting applications, either insertion sort, Shellsort, or
quicksort will be the method of choice, and the decision of which to use will depend
mostly on the size of the input. Figure 6.22 shows the running time obtained for
each algorithm on various file sizes (on a relatively slow computer).

The data was chosen to be random permutations of N integers, and the times
given include only the actual time to sort. The code given in Figure 6.2 was used
for insertion sort. Shellsort used the code in Section 6.4 modified to run with
Sedgewick’s increments. Based on literally millions of sorts, ranging in size from
100 to 25 million, the expected running time of Shellsort with these increments is
conjectured to be O(N 7). The heapsort routine is the same as in Section 6.5. Two
versions of quicksort are given. The first uses a simple pivoting strategy and does not
do a cutoff. Fortunately, the input files were random. The second uses median-of-
three partitioning and a cutoff of ten. Further optimizations were possible. We could
have coded the median-of-three routine in-line instead of using a function, and we

could have written quicksort nonrecursively. There are some other optimizations to-

the code that are fairly tricky to implement, and of course we could have used an
assembly language. We have made an honest attempt to code all routines efficiently,
but of course the performance can vary somewhat from machine to machine.
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Figure 6.22 Comparison of different sorting algo-
rithms (all times are in seconds)

Insertion Sort | Shellsort Heapsort Quicksort | Quicksort (opt.)

N O(N?) O(N7%)(?) | O(NlogN) [ O(NlogN) O(NlogN)
10- 0.00044 0.00041 0.00057 0.00052 .00046
100 0.00675 0.00171 . 0.00420 0.00284 .00244
1000 0.59564 0.02927 0.05565 0.03153 .02587
10000 | 58.864 0.42998 0.71650 0.36765 31532

100000 NA 5.7298 8.8591 4.2298 3.5882
1000000 NA 71.164 104.68 47.065 41.282

The highly optimized version of quicksort is as fast as Shellsort even for very
small input sizes. The improved version of quicksort still has an O(N?2) worst case
(one exercise asks you to construct a small example), but the chances of this worst
case appearing are so negligible as to not be a factor. If you need to sort large files,
quicksort is the method of choice. But never, ever, take the easy way out and use
the first element as pivot. It is just not safe to assume that the input will be random.
If you do not want to worry about this, use Shellsort. Shellsort will give a small
performance penalty but could also be acceptable, especially if simplicity is required.
Its worst case is only O(N#3); the chance of that worst case occurring is likewise
negligible.

Heapsort, although an O(N logN) algorithm with an apparently tight inner
loop, is slower than Shellsort. A close examination of the algorithm reveals that in
order to move data, heapsort does two comparisons. An improvement suggested
by Floyd moves data with essentially only ene comparison, but implementing this
improvement makes the code somewhat longer. We leave it to the reader to decide
whether the extra coding effort is worth the increased speed (Exercise 6.40).

Insertion sort is useful only for small or very nearly sorted inputs. We have not
included mergesort, because its performance is not as good as quicksort for main
memory sorts and it is not any simpler to code. We have seen, however, that merging
is the central idea of external sorts.

Exercises

6.1
6.2
6.3

Sort the sequence 3,1,4,1, 5,9, 2, 6, 5 using insertion sort.
What is the running time of insertion sort if all keys are equal?

Suppose we exchange elements A[i] and A[i + k], which were originally out of
order. Prove that at least 1 and at most 2k — 1 inversions are removed.

Show the result of running Shellsort on the input 9, 8, 7, 6, 5, 4, 3, 2, 1 using the
increments {1, 3, 7}.

6.4



6.5 a.

6.6*a.

li'l(-b.

EXERCISES

What is the running time of Shellsort using the two-increment sequence
{1,2)2

Show that for any N, there exists a three-increment sequence such that
Shellsort runs in O(N*3) time.

Show that for any N, there exists a six-increment sequence such that Shellsort
runs in O(N3?2) time.

Prove that the running time of Shellsort is (N?) using increments of the
form 1, ¢, c?, ..., ¢ for any integer c.

Prove that for these increments, the average running time is (N 32).

*6.7 Prove that if a k-sorted file is then h-sorted, it remains k-sorted.

**6.8 Prove that the running time of Shellsort, using the increment sequence suggested
by Hibbard, is (N3?) in the worst case. Hint: You can prove the bound
by considering the special case of what Shellsort does when all elements are either
0 or 1. Set InputDatali] = 1 if i is expressible as a linear combination of b,,
he—1, ..., bupp+1 and O otherwise.

6.9 Determme the running time of Shellsort for

a.
*b.

sorted input -
reverse-ordered input

6.10 Do either of the following modifications to the Shellsort routine coded in
Fig. 6.4 affect the worst case running time?

a.

b.

Before line 2, subtract one from Increment if it is even.
Before line 2, add one to Increment if it is even.

6.11 Show how heapsort processes the input 142, 543,123, 65,453,879, 572,434,
111,242,811,102.

6.12 a.
*b.

What is the running time of heapsort for presorted input?
Prove that the worst case bound for heapsort is achievable.

6.13 Sort 3,1,4,1,5,9, 2, 6 using mergesort.
6.14 How would you implement mergesort without using recursion?
6.15 Determine the running time of mergesort for

a.
b.
C.

sorted input
reverse-ordered input
random input

6.16 In the analysis of mergesort, constants have been disregarded. Prove that the

number of comparisons used in the worst case by mergesort is N[log N -
2MlogN1 4 1,

6.17 Sort 3,1,4,1,5,9,2,6,5, 3, 5 using quicksort with median-of-three partition-
ing and a cutoff of 3.
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6.18 Using the quicksort implementation in this chapter, determine the running
time of quicksort for

a. sorted input
b. reverse-ordered input
c. random input
6.19 Repeat Exercise 6.18 when the pivot is chosen as
a. the first element
b. the largest of the first two nondistinct keys
c. arandom element’
*d. the average of all keys in the set

6.20 a. For the quicksort implementation in this chapter, what is the running time:
when all keys are equal? .

b. Suppose we change the partitioning strategy so that neither i nor j-stops
when an element with the same key as the pivot is found. What fixes need
to be made in the code to guarantee that quicksort works, and what is the
running time, when all keys are equal?

¢. Suppose we change the partitioning strategy so that 7 stops at an element
with the same key as the pivot, but j does not stop in a similar case. What
fixes need to be made in the code to guarantee that quicksort works, and
when all keys are equal, what is the running time of quicksort? '

6.21 Suppose we choose the middle key as pivot. Does this make it unlikely that
quicksort will require quadratic time?

6.22 Construct a permutation of 20 elements that is as bad as possible for qu1cksort
using median-of-three partitioning and a cutoff of 3.

6.23 Write a program to implement the selection algorlthm
6.24 Solve the following recurrence: T{(N) = (1/N) [2 LT (i )] +¢N, T(0) = 0.

6.25 A sorting algorithm is stable if elements with equal keys are left in the same

order as they occur in the input. Which of the sorting algonthms in this chapter
are stable and which are not? Why?

6.26 Suppose you are given a sorted list of N elements followed by f(N) randomly
ordered elements. How would you sort the entire list if

a. f(N) = O(1)?
b. f(N) = O(logN)?
c. f(N) = O(J/N) -
*d. How large can f (N be for the entire list still to be sortable in O(N) time?
6.27 Prove that any algorithm that finds an element X in a sorted list of N elements
requires ) (log N) comparisons.

6.28 Using Stirling’s formula, N! =~ (N/e)N /27N, give a precise estimate for
log(N!).



6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

EXERCISES

*a. In how many ways can two sorted arrays of N elements be merged?

*b. Give a nontrivial lower bound on the number of comparisons required to
merge two sorted lists of N elements.

Prove that sorting N elements with integer keys in the range 1 = Key =< M
takes O(M + N) time using bucket sort.

Suppose you have an array of N elements containing only two distinct keys,
true and false. Give an O(N) algorithm to rearrange the list so that all false
elements precede the true elements. You may use only constant extra space.

Suppose you have an array of N elements, containing three distinct keys, true,
false, and maybe. Give an O(N) algorithm to rearrange the list so that all false
elements precede maybe elements, which in turn precede true elements. You
may use only constant extra space.

You have to sort an array of student records by social security number. Write
a program to do this, using radix sort with 1,000 buckets and three passes.

a. Prove that any comparison-based algorithm to sort 4 elements requires 5 -

comparisons.
b. Give an algorithm to sort 4 elements in 5 comparisons.

a. Prove that 7 comparisons are required to sort 5 elements using any
comparison-based algorithm.

*b. Give an algorithm to sort 5 elements with 7 comparisons.

Write an efficient version of Shellsort and compare performance when the
following increment sequences are used:

a. Shell’s original sequence

Hibbard’s increments

Knuth’s increments: b; = }(3* + 1)

Gonnet’s increments: b, = | 5], and b, = [kzbilj (with by = 1ifb; = 2)
Sedgewick’s increments.

o n T

Implement an optimized version of quicksort and experiment with combina-
tions of the following:

a. Pivot: first element, middle element, random element, median of three,
median of five.
b. Cutoff values from 0 to 20.

Write a routine that reads in two alphabetized files and merges them together,
forming a third, alphabetized, file.

Suppose we implement the median of three routine as follows: Find the median

of A[Left], A[Center], A[Right], and swap it with A[Right]. Proceed with the

normal partitioning step starting 7 at Left and j at Right — 1 (instead of Left + 1

and Right — 2). ]

a. Suppose the input is 2, 3, 4, ..., N — 1, N, 1. For this input, what is the
running time of this version of quicksort? '

231



232

CHAPTER 6/SORTING

b. Suppose the input is in reverse order. For this input, what is the running
time of this version of quicksort?

6.40 Prove that any comparison-based sorting algorithm requires (N log N') com-
parisons on average.

6.41 Consider the following strategy for PercolateDown. We have a hole at node
X. The normal routine is to compare X’s children and then move the child up
to X if it is larger (in the case of a (max)heap) than the element we are trying
to place, thereby pushing the hole down; we stop when it is safe to place the
new element in the hole. The alternate strategy is to move elements up and
the hole down as far as possible, without testing whether the new cell can be
inserted. This would place the new cell in a leaf and probably violate the heap
order; to fix the heap order, percolate the new cell up in the normal manner.
Write a routine to include this idea, and compare the running time with a
standard implementation of heapsort.

~ 6.42 Propose an algorithm to sort a large file using only two tapes.

6.43 a. Show that a lower bound of N!/22N on the number of heaps is implied by
the fact that build-heap uses at most 2N comparisons.

b. Use Stirling’s formula to expand this bound.

6.44 ANSI C requires the routine gsort to be present in C libraries. gsort is typically
implemented by quicksort (but this is not required). Experiment with various
inputs to see if gsort can be driven to quadratic behavior. Try random 0s’
and 1s.
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CHAPTER 7

Hashing

So far it seems that to perform findin a set of N elements, we have to take O(N
logN) to either sort the elements (since it is said to be the lower bound for sorting)
or to build a binary search tree first, and then take an average time of O(logN) to
find the element. In this chapter, we introduce bashing which is a technique used
for petforming insertions, deletions, and finds in constant average time

Comparing to the search tree ADT which has been discussed in Chapter 4, we
will inttoduce the bash table ADT, which supports only a subset of the operations
allowed by binary search trees. The implementation of hash tables is frequently
called hashing. Tree operations that require any ordering information among the
elements are not supported efficiently. Thus, operations such as FindMin, FindMax,
and the printing of the entire table in sorted order in linear time are not supported.

The central data structure in this chapter is the hash table. We will

o See several methods of implementing the hash table.
e Compare these methods analytically.

e Show numerous applications of hashing.

e Compare hash tables with binary search trees.

7.1. General Idea

Intertpolation Search

Before talking about hashing, let us take a closer look at the lower bound for the
finds. Actually an average time of O(logN) becomes the lower bound since we
confine ourselves to performing this operation by comparisons only. In other
words, to break this bound we will have to do something other than compatisons

to gain a better speed. Interpolation search is one attempt of breaking this lower
bound.

Given an ordered set of keys K, <K, <..<K,, binary search takes a worst
case of O(log N) to determine if a key, K, is in the list by comparing K with the 235
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key in the middle and repeat. In interpolation search, these keys are plotted
with respect to their indices and are treated as a discretization of a continuous
function curve. If we connect the two end points by a straight line, then the
projection of K on the index axis is given by

pope K-K)u-) (7.1)

Ku - KI
as shown in Fig, 7.1.
Key /
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Figure 7.1 Illustration of interpolation search

In case that all the keys are distributed on a straight line, the index of K can
be found immediately even though it is not the middle element of the set.

If the keys are on a concave curve (such as the case in Fig, 7.1), then we
must have K;>K. In that case, we only have to let u=j' and continue the process
recursively with the new interval [/, #]. The correct index of K can be found after
a certain recursions. Similarly for the convex curve, where the upper bound / must
be updated for the next recursion.

The running time of interpolation search depends on the concavity of the
curve. When almost all the keys are on a straight line, the time complexity for
finding any element can be O(1). The lower bound is broken because we intro-
duced formula 7.1 before doing any comparison on the keys.

Hashing is similar to this method in a sense that it records the relations
between keys and their indices by various of hash _functions, and hence speed
up the searching process.

Hash Table

The ideal hash table data structure is merely an array of some fixed size, containing
the keys. Typically, a key is a string with an associated value (for instance, salary
information). We will refer to the table size as TableSize, with the understanding that
this is part of a hash data structure and not merely some variable floating around

globally. The common convention is to have the table run from 0 to TableSize — 1;
we will see why shortly,



7.2. HASH FUNCTION

0
1
2
3 john 25000
4 phil 31250
5
6 dave 27500
7 mary 28200
8
9

Figure 7.2 An ideal hash table

Each key is mapped into some number in the range 0 to TableSize — 1 and placed
in the appropriate cell. The mapping is called a hash function, which ideally should
be simple to compute and should ensure that any two distinct keys get different cells.
Since there are a finite number of cells and a virtually inexhaustible supply of keys,
this is clearly impossible, and thus we seek a hash function that distributes the keys
evenly among the cells. Figure 7.1 is typical of a perfect situation. In this example,
johbn hashes to 3, phil hashes to 4, dave hashes to 6, and mary hashes to 7.

This is the basic idea of hashing. The only remaining problems deal with -

choosing.a function, deciding what to do when two keys hash to the same value
(this is known as a collision), and deciding on the table size. :

7.2. Hash Function

If the input keys are integers, then simply returning Key mod TableSize is generally
a reasonable strategy, unless Key happens to have some undesirable properties. In
this case, the choice of hash function needs to be carefully considered. For instance,
if the table size is 10 and the keys all end in zero, then the standard hash function
is a bad choice. For reasons we shall see later, and to avoid situations like the one
above, it is usually a good idea to ensure that the table size is prime. When the input
keys are random integers, then this function is not only very simple to compute but
also distributes the keys evenly.

Usually, the keys are strings; in this case, the hash function needs to be chosen
carefully.

One option is to add up the ascn values of the characters in the string. In Figure
7.2 we declare the type Index, which is returned by the hash function. The routine
in Figure 7.4 implements this strategy and uses the typical C method of stepping
through a string.

The hash function depicted in Figure 7.4 is simple to implement and computes
an answer quickly. However, if the table size is large, the function does not distribute
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Figure 7.3 Type returned by hash function

typedef unsigned int Index;

Index
Hash( const char *Key, int TableSize )
{
unsigned int Hashval = 0;
/% 1%/ while( *Key != '\0' )
/% 2%/ Hashval += *Key++;
/* 3*/ return Hashval % TableSize;
}

Figure 7.4 A simple hash function

the keys well. For instance, suppose that TableSize = 10,007 (10,007 is a prime
number). Suppose all the keys are eight or fewer characters long. Since a char has an
integer value that is always at most 127, the hash function can only assume values
between 0 and 1,016, which is 127 * 8. This is clearly not an equitable distribution!

Another hash function is shown in Figure 7.5. This hash function assumes that
Key has at least two characters plus the NULL terminator. The value 27 represents
the number of letters in the English alphabet, plus the blank, and 729 is 272, This
function examines only the first three characters, but if these are random and the table
size is 10,007, as before, then we would expect a reasonably equitable distribution.
Unfortunately, English is not random. Although there are 26° = 17,576 possible
combinations of three characters (ignoring blanks), a check of a reasonably large
on-line dictionary reveals that the number of different combinations is actually only
2,851. Even if none of these combinations collide, only 28 percent of the table can
actually be hashed to. Thus this function, although easily computable, is also not
appropriate if the hash table is reasonably large.

Figure 7.6 shows a third attempt at a hash function. This hash function
involves all characters in the key and can generally be expected to distribute well
(it computes Zfzf’”_l Key[KeySize — i — 1] - 32/, and brings the result into proper
range). The code computes a polynomial function (of 32) by use of Horner’s
rule. For instance, another way of computing b, = k; + 27k, + 27%k;3 is by the
formula by = ((k3) * 27 + k2) * 27 + k1. Horner’s rule extends this to an nth degree
polynomial. B

We have used 32 instead of 27, because multiplication by 32 is not really a
multiplication, but amounts to bit-shifting by $. In lifte 2, the addition could be
replaced with a bitwise Exclusive Or, for increased speed.
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Figure 7.5 Another possible hash function—
not too good

Index
Hash( const char *Key, int TableSize )
{
return ( Key[ 0 ] + 27 * Key[ 1] +.729 * Key[ 2 ] )
% TableSize;

}

Index

Hash( const char *Key, int TableSize )

{

unsigned int Hashval = 0;

/* 1%/ while( *Key != '\0' )
/* 2%/ Hashval = ( Hashval << 5 ) + *Key++;
/¥ 3%/ return Hashval % TableSize;

}

Figure 7.6 A good hash function

The hash function described in Figure 7.6 is not necessarily the best with respect
to table distribution, but does have the merit of extreme simplicity (and speed if
overflows are allowed). If the keys are very long, the hash function will take too long
to compute. Furthermore, the early characters will wind up being left-shifted out of

the eventual answer. A common practice in this case is not to use all the characters.
The length and properties of the keys would then influence the choice. For instance,

the keys could be a complete street address. The hash function might include a couple
of characters from the street address and perhaps a couple of characters from the
city name and zip code. Some programmers implement their hash function by using

only the characters in the odd spaces, with the idea that the time saved computing
the hash function will make up for a slightly less evenly distributed function.

The main programming detail left is collision resolution. If, when an element is
inserted, it hashes to the same value as an already inserted element, then we have a

collision and need to resolve it. There are several methods for dealing with this, We
will discuss two of the simplest: separate chaining and open addressing.

7.3. Separate Chaining

The first strategy, commonly known as separate chaining, is to keep a list of all
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Figure 7.7 A separate chaining hash table

elements that hash to the same value. For convenience, our lists have headers. This
makes the list implementation the same as in Chapter 3. If space is tight, it might be
preferable to avoid their use. We assume for this section that the keys are the first 10
perfect squares and that the hashing function is simply Hash(X) = X mod 10. (The
table size is not prime but is used here for simplicity.) Figure 7.7 should make this
clear.

To perform a Find, we use the hash function to determine which list to traverse.
We then traverse this list in the normal manner, returning the position where the
item is found. To perform an Insert, we traverse down the appropriate list to check
whether the element is already in place (if duplicates are expected, an extra field is
usually kept, and this field would be incremented in the event of a match). If the
element turns out to be new, it is inserted either at the front of the list or at the end
of the list, whichever is easiest. This is an issue most easily addressed while the code
is being written. Sometimes new elements are inserted at the front of the list, since it
is convenient and also because frequently it happens that recently inserted elements
are the most likely to be accessed in the near future.

The type declarations required to implement separate chaining are shown in
Figure 7.8. The ListNode structure is the same as the linked list declarations of
Chapter 3. The hash table structure contains an array of linked lists (and the number
of lists in the array), which are dynamically allocated when the table is initialized.
The HashTable type is just a pointer to this structure.

Notice that the TheLists field is actually a pointer to a pointer to a ListNode
structure. If typedefs and abstraction are not used, this can be quite confusing,

Figure 7.9 shows the initialization function, which uses the same ideas that
were seen in the array implementation of stacks. Lines 4 through 6 allocate a hash
table structure. If space is available, then H will point to a structure containing an
integer and a pointer to a list. Line 7 sets the table size to a prime number, and lines
8 through 10 attempt to allocate an array of lists. Since a List is defined to be a
pointer, the result is an array of pointers.
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#ifndef _HashSep_H

struct ListNode;
typedef struct ListNode *Position;
struct HashTbl;
typedef struct HashTbl *HashTable;

HashTable InitializeTable( int TableSize );

void DestroyTable( HashTable H );

Position Find( ElementType Key, HashTable H );

void Insert( ElementType Key, HashTable H );
ElementType Retrieve( Position P );

/* Routines such as Delete and MakeEmpty are om1tted */

#endif /* _HashSep_H */

/* Place in the implementation file */
struct ListNode

ElementType Element;
Position Next;

|5
typedef Position List;

/* List *TheList will be an array of lists, allocated later */
/* The 1lists use headers (for simplicity), */

/* though this wastes space ¥/

struct HashTbl

int TableSize;
List *TheLists;

|-

Figure 7.8 Type declaration for separate chaining
hash table

If our List implementation were not using headers, we could stop here. Since
our implementation uses headers, we must allocate one header per list and set its
Next field to NULL. This is done in lines 11 through 15. Of course, lines 12 through
15 could be replaced with the statement

H->Thebists[ 1 ] = MakeEmpty( );

Although we have not used this option, because in this instance it is preferable to
make the code as self-contained as possible, it is certainly worth considering. An
inefficiency of our code is that the malloc on line 12 is performed H->TableSize
times. This can be avoided by replacing line 12 with one call to malloc before the
loop occurs:
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HashTable
InitializeTable( int TableSize )
{
HashTable H;
int i;
/* 1*/ if( TableSize < MinTableSize )
/* 2%/ Error( "Table size too small” );
/* 3*/ return NULL;
}
/* Allocate table */
/* 4%/ H = malloc( sizeof( struct HashTbl ) );
/* 5%/ if( H == NULL )
/* 6%/ FatalError( "Out of space!!!" );
/* 7*/ H->TableSize = NextPrime( TableSize );
. /* Allocate array of lists */
/* 8%/ H->TheLists = malloc( sizeof( List ) * H->TableSize );
/* 9%/ if( H->TheLists == NULL )
/*10*/ FatalError( "Out of spacel!!" );
/* Allocate 1ist headers */
/*11*/ for( i = 0; i < H->TableSize; i++ )
/*12*/ H->TheLists[ i ] = malloc( sizeof( struct ListNode ) );
/*13*%/ if( H->Thelists[ i ] == NULL )
/*14*/ FatalError( "Out of space!!l!" );
else :
/*15*/ H->ThelLists[ i ]->Next = NULL;
}
/*16%/ return H;
}

Figure 7.9 Initialization routine for separate chaining

hash table

H->TheLists = malloc (H->TableSize * sizeof (struct ListNode));
Line 16 returns H. .

The call Find(Key, H) will return a pointer to the cell containing Key. The
code to implement this is shown in Figure 5.9. Notice that lines 2 through 5 are
identical to the code to perform a Find that is given in Chapter 3. Thus, the list ADT
implementation in Chapter 3 could be used here. Remember that if ElementType
is a string, comparison and assignment must be done with strcmp and strcpy,

respectively.

Next comes the insertion routine. If the item to be inserted is already present,
then we do nothing; otherwise we place it at the front of the list (see Fig. 7.11).*

*Since the table in Figure 7.7 was created by inserting at the end of the list, the code in Figure 7.11 will
produce a table with the lists in Figure 7.7 reversed.
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/* 1%/
/* 2/
/* 3%/

/* 4%/
/* 5%/

Position

Find( ElementType Key, HashTable H )

{

}

Position P;
List L;

L = H->TheLists[ Hash( Key, H->TableSize ) 1; '
P = L->Next;
while( P != NULL && P->Element != Key )

/* Probably need strcmp!! */

P = P->Next;
return P;

Figure 7.10 Find routine for separate chaining hash table

The element can be placed anywhere in the list; this is most convenient in our case.
Notice that the code to insert at the front of the list is essentially identical to the
code in Chapter 3 that implements a Push using linked lists. Again, if the ADTs in
Chapter 3 have already been carefully implemented, they can be used here.

The insertion routine coded in Figure 7.11 is somewhat poorly coded, because
it computes the hash function twice. Redundant calculations are always bad, so
this code should be rewritten if it turns out that the hash routines account for a
significant portion of a program’s running time.

Figure 7.11 Insert routine for separate chaining hash table

/* 1*/
/* 2%/

/* 3%/
/% 4%/
/% 5%/

/% 6%/
/% 7%/
/* 8%/
/* 9%/

void
Insert( ElementType Key, HashTable H )

{

Position Pos, NewCell;
List L;

Pos = Find( Key, H );
if( Pos == NULL ) /* Key 1is not found */

{ .
NewCell = malloc( sizeof( struct ListNode ) );
if( NewCell == NULL )
FatalError( "Out of space!!!"™ );
else
{
L = H->TheLists[ Hash( Key, H->TableSize ) 1:
NewCelT->Next = L->Next;
NewCell->Element = Key; /* Probably need strcpy! */
L->Next = NewCell;
}
}
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The deletion routine is a straightforward implementation of deletion in a linked
list, so we will not bother with it here. If the repertoire of hash routines does not
include deletions, it is probably best to not use headers, since their use would provide
no simplification and would waste considerable space. We leave this as an exercise,
too.

Any scheme could be used besides linked lists to resolve the collisions; a binary
search tree or even another hash table would work, but we expect that if the table
is large and the hash function is good, all the lists should be short, so it is not
worthwhile to try anything complicated. -

We define the load factor, A, of a hash table to be the ratio of the number of
elements in the hash table to the table size. In the example above, A = 1.0. The
average length of a list is A. The effort required to perform a search is the constant
time required to evaluate the hash function plus the time to traverse the list. In an
unsuccessful search, the number of links to traverse is A (excluding the final NULL
link) on average. A successful search requires that about 1 + (A/2) links be traversed;
there is a guarantee that one link must be traversed (since the search is successful),
and we also expect to go halfway down a list to find our match. This analysis shows
that the table size is not really important, but the load factor is. The general rule for

- separate chaining hashing is to make the table size about as large as the number of

elements expected (in other words, let A = 1). It is also a good idea, as mentioned
before, to keep the table size prime to ensure a good distribution.

7.4. Open Addressing

Separate chaining hashing has the disadvantage of requiring pointers. This tends
to slow the algorithm down a bit because of the time required to allocate new
cells, and also essentially requires the implementation of a second data structure.
Open addressing hashing is an alternative to resolving collisions with linked lists. In
an open addressing hashing system, if a collision occurs, alternative cells are tried
until an empty cell is found. More formally, cells bo(X), b1(X), h2(X), ... are tried
in succession, where b;(X) = (Hash(X) + F({)) mod TableSize, with F(0) = 0. The
function, F, is the collision resolution strategy. Because all the data go inside the
table, a bigger table is needed for open addressing hashing than for separate chaining
hashing. Generally, the load factor should be below A = 0.5 for open addressing
hashing. We now look at three common collision resolution strategies.

7.4.1. Linear Probing

In linear probing, F is a linear function of i, typically F(i) = i. This amounts to
trying cells sequentially (with wraparound) in search of an empty cell. Figure 7.12
shows the result of inserting keys {89, 18, 49, 58, 69} into a hash table using the
same hash function as before and the collision resolution strategy, F(i) = i.

The first collision occurs when 49 is inserted; it is put in the next available
spot, namely, spot 0, which is open. The key 58 collides with 18, 89, and then 49
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EmptyTable | After89 | After 18 | After49 | After 58 | After 69
0 ' 49 49 49
1 ' 58 58
2 69
3
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

Figure 7.12 Open addressing hash table with linear
probing, after each insertion

before an empty cell is found three away. The collision for 69 is handled in a similar
manner. As long as the table is big enough, a free cell can always be found, but the
time to do so can get quite large. Worse, even if the table is relatively empty, blocks
of occupied cells start forming. This effect, known as primary clustering, means
that any key that hashes into the cluster will require several attempts to resolve the
collision, and then it will add to the cluster.

Although we will not perform the calculations here, it can be shown that the
expected number of probes using linear probing is roughly (1 + 1/(1 — A)?) for
insertions and unsuccessful searches, and %(1 +1/(1 — A)) for successful searches. The
calculations are somewhat involved. It is easy to see from the code that insertions
and unsuccessful searches require the same number of probes. A moment’s thought
suggests that, on average, successful searches should take less time than unsuccessful
searches.

The corresponding formulas, if clustering is not a problem, are fairly easy to
derive. We will assume a very large table and that each probe is independent of the
previous probes. These assumptions are satisfied by a random collision resolution
strategy and are reasonable unless A is very close to 1. First, we derive the expected
number of probes in an unsuccessful search. This is just the expected number of
probes until we find an empty cell. Since the fraction of empty cells is 1 — A, the
number of cells we expect to probe is 1/(1 — A). The number of probes for a successful
search is equal to the number of probes required when the particular element was
inserted. When an element is inserted, it is done as a result of an unsuccessful search.
Thus, we can use the cost of an unsuccessful search to compute the average cost of
a successful search.
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The caveat is that A changes from 0 to its current value, so that earlier insertions
are cheaper and should bring the average down. For instance, in the table above,
A = 0.5, but the cost of accessing 18 is determined when 18 is inserted. At that
point, A = 0.2. Since 18 was inserted into a relatively empty table, accessing it
should be easier than accessing a recently inserted element such as 69. We can
estimate the average by using an integral to calculate the mean value of the insertion
time, obtaining

1(* 1
I(A)=l_\,[) mdx=

lln 1
A 1-2A

These formulas are clearly better than the corresponding formulas for linear probing.
Clustering is not only a theoretical problem but actually occurs in real implementa-
tions. Figure 7.13 compares the performance of linear probing (dashed curves) with
what would be expected from more random collision resolution. Successful searches
are indicated by an S, and unsuccessful searches and insertions are marked with U
and I, respectively.

If A = 0.75, then the formula above indicates that 8.5 probes are expected for
an insertion in linear probing. If A = 0.9, then 50 probes are expected, which is
unreasonable. This compares with 4 and 10 probes for the respective load factors
if clustering were not a problem. We see from these formulas that linear probing
can be a bad idea if the table is expected to be more than half full. If A = 0.5,
however, only 2.5 probes are required on average for insertion, and only 1.5 probes
are required, on average, for a successful search.

Figure 7.13 Number of probes plotted against load
factor for linear probing (dashed) and
random strategy (S is successful search,

U is unsuccessful search, and I is insertion)
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7.4.2. Quadratic Probing

Quadratic probing is a collision resolution method that eliminates the primary
clustering problem of linear probing. Quadratic probing is what'you would expect—
the collision function is quadratic. The popular choice is F(i) = 2. Figure 7.14 shows
the resulting open addressing hash table with this collision function on the same
input used in the linear probing example. :

When 49 collides with 89, the next position attempted is one cell away. This
cell is empty, so 49 is placed there. Next 58 collides at position 8. Then the cell one
away is tried, but another collision occurs. A vacant cell is found at the next cell
tried, which is 22 = 4 away. The key 58 is thus placed in cell 2. The same thing
happens for 69.

For linear probing it is a bad idea to let the hash table get nearly full, because
performance degrades. For quadratic probing, the situation is even more drastic:
There is no guarantee of finding an empty cell once the table gets more than half full,
or even before the table gets half full if the table size is not prime. This is because at
most half of the table can be used as alternative locations to resolve collisions.

Indeed, we prove now that if the table is half empty and the table size is prime,
then we are always guaranteed to be able to insert a new element.

THEOREM 7.1.
If quadratic probing is used, and the table size is prime, then a new element can
always be inserted if the table is at least half empty.

Figure 7.14 Open addressing hash table with quadratic
probing, after each insertion

EmptyTable | After89 | After18 | After49 | After58 | After 69

0 49 49 49
1~

2 58 58
3 69
4

5

6

7

8 18 18 18 18
9 89 89 89 89 89
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PROOF:

Let the table size, TableSize, be an (odd) prime greater than 3. We show
that the first | TableSize/2] alternative locations are all distinct. Two of these
locations are h(X) + i2(mod TableSize) and h(X) + j?(mod TableSize), where
0 < i,j < |TableSize/2). Suppose, for the sake of contradiction, that these
locations are the same, but i # j. Then

h(X)+i2 = b(X)+7*  (modTableSize)

it = j2 (mod TableSize)
i2—-j*=0 (mod TableSize)
G—+j)=0 (mod TableSize)

Since TableSize is prime, it follows that either (i — j) or (i + j) is equal to O
(mod TableSize). Since i and j are distinct, the first option is not possible. Since
0 <i,j <|TableSizel2], the second option is also impossible. Thus, the first
| TableSize/2] alternative locations are distinct. Since the element to be inserted
can also be placed in the cell to which it hashes (if there are no collisions), any .
element has [TableSize/2] locations into which it can go. If at most | TableSize/2)
positions are taken, then an empty spot can always be found. :

If the table is even one more than half full, the insertion could fail (although
this is extremely unlikely). Therefore, it is important to keep this in mind. It is also
crucial that the table size be prime.* If the table size is not prime, the number of
alternative locations can be severely reduced. As an example, if the table size were
16, then the only alternative locations would be at distances 1, 4, or 9 away.

Standard deletion cannot be performed in an open addressing hash table,
because the cell might have caused a collision to go past it. For instance, if we
remove 89, then virtually all of the remaining Finds will fail. Thus, open addressing
hash tables require lazy deletion, although in this case there really is no laziness
implied.

The type declarations required to implement open addressing hashing are shown
in Figure 7.14. Instead of an array of lists, we have an array of hash table entry
cells, which, as in separate chaining hashing, are allocated dynamically. Initializing
the table (Fig. 7.15) consists of allocating space (lines 1 through 10) and then setting
the Info field to Empty for each cell.

As with separate chaining hashing, Find(Key, H) will return the position of Key
in the hash table. If Key is not present, then Find will return the last cell. This cell
is where Key would be inserted if needed. Further, because it is marked Empty, it is
easy to tell that the Find failed. We assume for convenience that the hash table is at
least twice as large as the number of elements in the table, so quadratic resolution
will always work. Otherwise, we would need to test i (CollisionNum) before line 4.

*If the table size is a prime of the form 4k + 3, and the quadratic collision resolution strategy F(i) = =i?
is used, then the entire table can be probed. The cost is a slightly more complicated routine.
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#ifndef _HashQuad_H

typedef unsigned int Index;
typedef Index Position;

struct HashTb1;
typedef struct HashTb1 *HashTable;

HashTable InitializeTable( int TableSize );

void DestroyTable( HashTable H );

Position Find( ElementType Key, HashTable H );

void Insert( ElementType Key, HashTable H );
ElementType Retrieve( Position P, HashTable H );
HashTable Rehash( HashTable H );

/* Routines such as Delete and MakeEmpty are omitted */

#endif /* _HashQuad_H */

/* Place in the implementation file */
enum KindOfEntry { Legitimate, Empty, Deleted };

struct HashEntry

{
ElementType Element;

enum KindOfEntry Info;
b

typedef struct HashEntry Cell;

/* Cell *TheCells will be an array of */
/* HashEntry cells, allocated later */
struct HashTbl

int TableSize;
Cell *TheCells;
Y

Figure 7.15 Type declaration for open addressing
hash tables

In the implementation in Figure 7.17, elements that are marked as deleted count
as being in the table. This can cause problems, because the table can get too full
prematurely. We shall discuss this item presently.

Lines 4 through 6 represent the fast way of doing quadratic resolution.
From the definition of the quadratic resolution function, F(i) = F(i — 1) + 2i — 1,
so the next cell to try can be determined with a multiplication by 2 (really a bit
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HashTable ]
InitializeTable( int TableSize )
{
HashTable H;
int i;
/* 1%/ if( TableSize < MinTableSize )
/* 2%/ Error( "Table size too small” );
/* 3%/ return NULL;
}
/* Allocate table */
/* 4%/ H = malloc( sizeof( struct HashTbl ) );
/* 5%/ if( H == NULL )
/* 6%/ FatalError( "Out of spacell!"” );
/* 7%/ H->TableSize = NextPrime( TableSize );
/* Allocate array of Cells */
/* 8*/ H->TheCells = malloc( sizeof( Cell ) * H->TableSize );
/* 9%/ if( H->TheCells == NULL )
/¥10%/ FatalError( "Out of space!!!"™ );
/*11*/ for( i = 0; i < H->TableSize; i++ )
/¥12*%/ H->TheCells[ i 1.Info = Empty;
/*13*/ return H;
}

Figure 7.16 Routine to initialize open addressing
hash table

shift) and a decrement. If the new location is past the array, it can be put back in range
by subtracting TableSize. This is faster than the obvious method, because it avoids
the multiplication and division that seem to be required. An important warning: The
order of testing at line 3 is important. Don’t switch it!

The final routine is insertion. As with separate chaining hashing, we do nothing
if Key is already present. It is a simple modification to do something else. Otherwise,
we place it at the spot suggested by the Find routine. The code is shown in Figure
7.18.

Although quadratic probing eliminates primary clustering, elements that hash
to the same position will probe the same alternative cells. This is known as secondary
clustering. Secondary clustering is a slight theoretical blemish. Simulation results
suggest that it generally causes less than an extra half probe per search. The
following technique eliminates this, but does so at the cost of extra multiplications
and divisions.
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Position
Find( ElementType Key, HashTable H )
{

Position CurrentPos;

int CollisionNum;

/* 1%/ CollisionNum = 0;
/¥ 2%/ CurrentPos = Hash( Key, H->TableSize );
/* 3%/ while( H->TheCells[ CurrentPos ].Info != Empty &&

H->TheCells[ CurrentPos ].Element != Key )
/* Probably need strcmp!! */

{
/* 4%/ CurrentPos += 2 * ++CollisionNum - 1;
/* 5%/ if( CurrentPos >= H->TableSize )
/* 6%/ CurrentPos -= H->TableSize;
}
/* 7%/ return CurrentPos;

}

Figure 7.17 Find routine for hashing with quadratic probing

7.4.3. Double Hashing

The last collision resolution method we will examine is double hashing. For double
hashing, one popular choice is F(i) = i - hash,(X). This formula says that we apply a
second hash function to X and probe at a distance hash;(X), 2bash2(X), ..., and so
on. A poor choice of hash;(X) would be disastrous. For instance, the obvious choice
hashy(X) = X mod 9 would not help if 99 were inserted into the input in the previ-
ous examples. Thus, the function must never evaluate to zero. It is also important
to make sure all cells can be probed (this is not possible in the example below, because

Figure 7.18 Insert routine for hash tables with quadratic probing

void
Insert( ElementType Key, MashTable H )
{

Position Pos;

Pos = Find( Key, H );
if( H->TheCells[ Pos ].Info != Legitimate )

{

/¥ OK to insert here */
H->TheCells[ Pos ].Info = Legitimate;
H->TheCells[ Pos ].Element = Key;

/* Probably need strcpy! */
}
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Empty Table | After89 | After 18 | After49 | After58 | After 69
0 69
1
2
3 58 58
4
5
6 49 49 49
.
8 18 18 18 18
9 89 89 89 89 89

Figure 7.19 Open addressing hash table with double hashing, after each insertion

the table size is not prime). A function such as hash,(X) = R — (X mod R), with R a
prime smaller than TableSize, will work well. If we choose R = 7, then Figure 7.19
shows the results of inserting the same keys as before.

The first collision occurs when 49 is inserted. hash,(49) = 7 — 0 = 7, so 49 is
inserted in position 6. hash,(58) = 7—2 = 5,50 58 is inserted at location 3. Finally,
69 collides and is inserted at a distance hash,(69) = 7 — 6 = 1 away. If we tried
to insert 60 in position 0, we would have a collision. Since hash;(60) = 7 — 4 = 3,
we would then try positions 3, 6, 9, and then 2 until an empty spot is found. It is
generally possible to find some bad case, but there are not too many here.

As we have said before, the size of our sample hash table is not prime. We
have done this for convenience in computing the hash function, but it is worth
seeing why it is important to make sure the table size is prime when double hashing
is used. If we attempt to insert 23 into the table, it would collide with 58. Since
hashy(23) = 7 -2 = 5, and the table size is 10, we essentially have only one
alternative location, and it is already taken. Thus, if the table size is not prime, it is
possible to run out of alternative locations prematurely. However, if double hashing
is correctly implemented, simulations imply that the expected number of probes is
almost the same as for a random collision resolution strategy. This makes double
hashing theoretically interesting. Quadratic probing, however, does not require the
use of a second hash function and is thus likely to be simpler and faster in practice.

7.5. Rehashing

If the table gets too full, the running time for the operations will start taking too long
and Inserts might fail for open addressing hashing with quadratic resolution. This
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can happen if there are too many removals intermixed with. insertions. A solution,
then, is to build another table that is about twice as big (with an associated new
hash function) and scan down the entire original hash table, computing the new
hash value for each (nondeleted) element and inserting it in the new table.

As an example, suppose the elements 13, 15, 24, and 6 are inserted into an
open addressing hash table of size 7. The hash function is #(X) = X mod 7. Suppose
- linear probing is used to resolve collisions. The resulting hash table appears in
Figure 7.20.

If 23 is inserted into the table, the resulting table in Fig. 7.21 will be over 70
percent full. Because the table is so full, a new table is created. The size of this table
is 17, because this is the first prime that is twice as large as the old table size. The
new hash function is then 5(X) = X mod 17. The old table is scanned, and elements
6,15, 23, 24, and 13 are inserted into the new table. The resulting table appears in
Figure 7.22.

This entire operation is called rebashing. This is obviously a very expensive
operation; the running time is O(N), sinice there are N elements to rehash and the

Figure 7.20 Open addressing hash table with linear ‘
probing with input 13, 15, 6, 24 o

0 6

1 5
2

3 24

4

5

6 13

Figure 7.21 Open addressing hash table with linear
probing after 23 is inserted

0 6
1 15
2 23
3 24
4

5

6 13
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0
1
2
3
4
5
6 6
7 23
8 24
9
10
11
12
13 13
14
15 15
16

Figure 7.22 Open addressing hash table after rehashing

table size is roughly 2N, but it is actually not all that bad, because it happens very
infrequently. In particular, there must have been N/2 Inserts prior to the last rehash,
so it essentially adds a constant cost to each insertion.” If this data structure is part
of the program, the effect is not noticeable. On the other hand, if the hashing is
performed as part of an interactive system, then the unfortunate user whose insertion
caused a rehash could see a slowdown.

Rehashing can be implemented in several ways with quadratic probing. One
alternative is to rehash as soon as the table is half full. The other extreme is to rehash
only when an insertion fails. A third, middle-of-the-road strategy is to rehash when
the table reaches a certain load factor. Since performance does degrade as the load
factor increases, the third strategy, implemented with a good cutoff, could be best.

Rehashing frees the programmer from worrying about the table size and is im-
portant because hash tables cannot be made arbitrarily large in complex programs.
The exercises ask you to investigate the use of rehashing in conjunction with lazy

*This is why the new table is made twice as large as the old table.
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HashTable
Rehash( HashTable H )
{
int i, 01dSize;
Cell *01dCells;

/* 1%/ 01dCel1s = H->TheCells;
/* 2%/ 01dSize = H->TableSize;

/* Get a new, empty table */
/% 3%/ H = InitializeTable( 2 * 01dSize );

/* Scan through old table, reinserting into new */
/% 4%/ for( i = 0; i < 01dSize; i++ )
/* 5%/ if( 01dCel1s[ i ].Info == Legitimate )
/* 6%/ Insert( 01dCells[ i ].Element, H );
/* 7%/ free( 01dCells );
/% 8%/ return H;

}

Figure 7.23 Rehashing for open addressing hash tables

deletion. Rehashing can be used in other data structures as well. For instance, if
the queue data structure of Chapter 3 became full, we could declare a double-sized
array and copy everything over, freeing the original.

Figure 7.23 shows that rehashing is simple to implement.

7.6. Extendible Hashing

Our last topic in this chapter deals with the case where the amount of data is too
large to fit in main memory. As we saw in Chapter 4, the main consideration then is
the number of disk accesses required to retrieve data,

As before, we assume that at any point we have N records to store; the value of
N changes over time. Furthermore, at most M records fit in one disk block. We will
use M = 4 in this section.

If either open addressing hashing or separate chaining hashing is used, the major
problem is that collisions could cause several blocks to be examined during a Find,
even for a well-distributed hash table. Furthermore, when the table gets too full, an
extremely expensive rehashing step must be performed, which requires O(N) disk
accesses.

A clever alternative, known as extendible hashing, allows a Find to be performed
in two disk accesses. Insertions also require few disk accesses.

We recall from Chapter 4 that a B-tree has depth O(logy, N ). As M increases,
the depth of a B-tree decreases. We could in theory choose M to be so large that
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the depth of the B-tree would be 1. Then any Find after the first would take one
disk access, since, presumably, the root node could be stored in main memory. The
problem with this strategy is that the branching factor is so high that it would
take considerable processing to determine which leaf the data was in. If the time to
perform this step could be reduced, then we would have a practical scheme. This is
exactly the strategy used by extendible hashing.

Let us suppose, for the moment, that our data consists of several six-bit integers.
Figure 7.24 shows an extendible hashing scheme for these data. The root of the
“tree” contains four pointers determined by the leading two bits of the data. Each
leaf has up to M = 4 elements. It happens that in each leaf the first two bits are
identical; this is indicated by the number in parentheses. To be more formal, D will-
represent the number of bits used by the root, which is sometimes known as the
directory. The number of entries in the directory is thus 2P. d; is the number of
leading bits that all the elements of some leaf L have in common. dj, will depend on
the particular leaf, and d; = D.

Suppose that we want to insert the key 100100. This would go into the third
leaf, but as the third leaf is already full, there is no room. We thus split this leaf into
two leaves, which are now determined by the first three bits. This requires increasing
the directory size to 3. These changes are reflected in Figure 7.25.

Notice that all of the leaves not involved in the split are now pointed to by two
adjacent directory entries. Thus, although an entire directory is rewritten, none of
the other leaves is actually accessed.

If the key 000000 is now inserted, then the first leaf is split, generating two
leaves with d; = 3. Since D = 3, the only change required in the directory is the
updating of the 000 and 001 pointers. See Figure 7.26.

This very simple strategy provides quick access times for Insert and Find
operations on large databases. There are a few important details we have not
considered.

Figure 7.24 Extendible hashing: original data
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000 001 010 011 100 101 110 111
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000100 | (010100 ] | 100000{ | 101000 | 111000
001000 OIIOOOV 100100 | | 101100 | 111001
001010 101110

001011

Figure 7.25 Extendible hashing: after insertion of 100100 and directory split

First, it is possible that several directory splits will be required if the elements
in a leaf agree in more than D + 1 leading bits. For instance, starting at the original
example, with D = 2, if 111010, 111011, and finally 111100 are inserted, the
directory size must be increased to 4 to distinguish between the five keys. This is an
easy detail to take care of, but must not be forgotten. Second, there is the possibility
of duplicate keys; if there are more than M duplicates, then this algorithm does not
work at all. In this case, some other arrangements need to be made.

These possibilities suggest that it is important for the bits to be fairly random.
This can be accomplished by hashing the keys into a reasonably long integer—hence

the name.

Figure 7.26 Extendible hashing: after insertion of 000000 and leaf split

000 001 010 011 100 101 110 111
3 3) 0)) 3 3) @
000000 | 1001000 | | 010100 | 100000 | | 101000 | | 111000
1000100 |001010 | 011000} {100100 { | 101100} { 111001
001011 101110
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We close by mentioning some of the performance properties of extendible
hashing, which are derived after a very difficult analysis. These results are based on
the reasonable assumption that the bit patterns are uniformly distributed.

The expected number of leaves is (N/M)log,e. Thus the average leaf is
In2 = 0.69 full. This is the same as for B-trees, which is not entirely surprising,
since for both data structures new nodes are created when the (M + 1)th entry is
added.

The more surprising result is that the expected size of the directory (in other
words, 2P) is O(N1+VM/M). If M is very small, then the directory can get unduly
large. In this case, we can have the leaves contain pointers to the records instead of
the actual records, thus increasing the value of M. This adds a second disk access to
each Find operation in order to maintain a smaller directory. If the directory is too
large to fit in main memory, the second disk access would be needed anyway.

Summary

Hash tables can be used to implement the Insert and Find operations in constant
average time: It is especially important to pay attention to details such as load factor
when using hash tables, since otherwise the time bounds are not valid. It is also
important to choose the hash function carefully when the key is not a short string
or integer.

For separate chaining hashing, the load factor should be close to 1, although
performance does not significantly degrade unless the load factor becomes very large.
For open addressing hashing, the load factor should not exceed 0.5, unless this is
completely unavoidable. If linear probing is used, performance degenerates rapidly
as the load factor approaches 1. Rehashing can be implemented to allow the table
to grow (and shrink), thus maintaining a reasonable load factor. This is important
if space is tight and it is not possible just to declare a huge hash table.

Binary search trees can also be used to implement Insert and Find operations.
Although the resulting average time bounds are O(log N), binary search trees also
support routines that require order and are thus more powerful. Using a hash table,
it is not possible to find the minimum element. It is not possible to search efficiently
for a string unless the exact string is known. A binary search tree could quickly find
all items in a certain range; this is not supported by hash tables. Furthermore, the
O(log N) bound is not necessarily that much more than O(1), especially since no
multiplications or divisions are required by search trees.

On the other hand, the worst case for hashing generally results from an
implementation error, whereas sorted input can make binary trees perform poorly.
Balanced search trees are quite expensive to implement, so if no ordering information
is required and there is any suspicion that the input might be sorted, then hashing is
the data structure of choice.

Hashing applications are abundant. Compilers use hash tables to keep track of
declared variables in source code. The data structure is known as a symbol table.
Hash tables are the ideal application for this problem because only Inserts and Finds
are performed. Identifiers are typically short, so the hash function can be computed
quickly.
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A hash table is useful for any graph theory problem where the nodes have real
names instead of numbers. Here, as the input is read, vertices are assigned integers
from 1 onward by order of appearance. Again, the input is likely to have large
groups of alphabetized entries. For example, the vertices could be computers. Then
if one particular installation lists its computers as ibm1, ibm2, ibm3, ..., there could
be a dramatic effect on efficiency if a search tree is used.

A third common use of hash tables is in programs that play games. As the
program searches through different lines of play, it keeps track of positions it has
seen by computing a hash function based on the position (and storing its move for
that position). If the same position reoccurs, usually by a simple transposition of
moves, the program can avoid expensive recomputation. This general feature of all
game-playing programs is known as the transposition table.

Yet another use of hashing is in on-line spelling checkers. If misspelling detection
(as opposed to correction) is important, an entire dictionary can be prehashed and
words can be checked in constant time. Hash tables are well suited for this, because
it is not important to alphabetize words; printing out misspellings in the order they
occurred in the document is certainly acceptable.

We close this chapter by returning to the word puzzle problem of Chapter 1.
If the second algorithm described in Chapter 1 is used, and we assume that the
maximum word size is some small constant, then the time to read in the dictionary
containing W words and put it in a hash table is O(W). This time is likely to be
dominated by the disk I/O and not the hashing routines. The rest of the algorithm
would test for the presence of a word for each ordered quadruple (row, column,
orientation, number of characters). As each lookup would be O(1), and there are
only a constant number of orientations (8) and characters per word, the running
time of this phase would be O(R - C). The total running time would be O(R:C + W),
which is a distinct improvement over the original O(R - C - W). We could make
further optimizations, which would decrease the running time in practice; these are
described in the exercises.

Exercises

7.1 Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function
h(X) = X (mod 10), show the resulting:

a. Separate chaining hash table.
. Open addressing hash table using linear probing.
. Open addressing hash table using quadratic probing.

. Open addressing hash table with second hash function b(X) = 7 —
(X mod 7).

7.2 Show the result of rehashing the hash tables in Exercise 7.1.

/a o O

7.3 Write a program to compute the number of collisions required in a long random

sequence of insertions using linear probing, quadratic probing, and double
hashing. o

259



260

CHAPTER 7/HASHING

7.4

7.5

7.6

7.7

7.8

7.9

A large number of deletions in a separate chaining hash table can cause the
table to be fairly empty, which wastes space. In this case, we can rehash to a
table half as large. Assume that we rehash to a larger table when there are twice
as many elements as the table size. How empty should the table be before we
rehash to a smaller table?

An alternative collision resolution strategy is to define a sequence, F({) = r;,
where ro = 0 and 71,73, ..., 7N is a random permutation of the first N integers
(each integer appears exactly once).

a. Prove that under this strategy, if the table is not full, then the collision can
always be resolved.

b. Would this strategy be expected to eliminate clustering?

c. If the load factor of the table is A, what is the expected time to perform an
insert?

d. If the load factor of the table is A, what is the expected time for 4 successful
search?

e. Give an efficient algorithm (theoretically as well as practically) to generate
the random sequence. Explain why the rules for choosing P are important.

What are the advantages and disadvantages of the various collision resolution
strategies?

Write a program to implement the following strategy for multiplying two
sparse polynomials Py, P, of size M and N, respectively. Each polynomial is
represented as a linked list with cells consisting of a coefficient, an exponent,
and a Next pointer (Exercise 3.7). We multiply each term in P; by a term in P,
for a total of M N operations. One method is to sort these terms and combine
like terms, but this requires sorting M N records, which could be expensive,
especially in small-memory environments. Alternatively, we could merge terms
as they are computed and then sort the result.

a. Write a program to implement the alternative strategy.

b. If the output polynomial has about O(M + N) terms, what is the running
time of both methods?

A spelling checker reads an input file and prints out all words not in some
on-line dictionary. Suppose the dictionary contains 30,000 words and the file
is large, so that the algorithm can make only one pass through the input file.
A simple strategy is to read the dictionary into a hash table and look for each
input word as it is read. Assuming that an average word is seven characters and
that it is possible to store words of length L in L + 1 bytes {so space waste is not
much of a consideration), and assuming an open addressing table, how much
space does this require?

If memory is limited and the entire dictionary cannot be stored in a hash table,
we can still get an efficient algorithm that almost always works. We declare an
array Table of bits (initialized to zeros) from 0 to TableSize — 1. As we read in
a word, we set Table[Hash(Word)] = 1. Which of the following is true?
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a. If 2 word hashes to a location with value 0, the word is not in the
dictionary.
b. If a word hashes to a location with value 1, then the word is in the
dictionary.
Suppose we choose TableSize = 300,007.
c. How much memory does this require?
. d. What is the probability of an error in this algorithm?

e. A typical document might have about three actual misspellings per page
of 500 words. Is this algorithm usable?

*7.10 Describe a procedure that avoids initializing a hash table (at the expense of
memory).

7.11 Suppose we want to find the first occurrence of a string P1P; -** P, in a long
input string A;A; : -+ Ay. We can solve this problem by hashing the pattern
string, obtaining a hash value Hp, and comparing this value with the hash
value formed from A A; ++* Ay, A2A3 - Aps1, A3A4 ++* Apsa, and so on until
AN—p+1AN—g+2 *** AN. If we have a match of hash values, we compare the
strings character by character to verify the match. We return the position (in
A) if the strings actually do match, and we continue in the unlikely event that
the match is false.

a. Show that if the hash value of A;A; 1 ** A; ;-1 is known, then the hash
value of A;+1A;+2 -+ A; 14 can be computed in constant time.

b. Show that the running time is O(k + N) plus the time spent refuting false
matches.

*c. Show that the expected number of false matches is negligible.
d. Write a program to implement this algorithm.
**e. Describe an algorithm that runs in O{k + N) worst-case time.
**{. Describe an algorithm that runs in O(N/k) average time,

7.12 A Basic program consists of a series of statements numbered in ascending
order. Control is passed by use of a goto or gosub and a statement number.
Write a program that reads in a legal BAsic program and renumbers the
statements so that the first starts at number F and each statement has a
number D higher than the previous statement. You may assume an upper
limit of N statements, but the statement numbers in the input might be as
large as a 32-bit integer. Your program must run in linear time.

7.13 a. Implement the word puzzle program using the algorithm described at the
end of the chapter.

b. We can get a big speed increase by storing, in addition to each word W, all
of W’s prefixes. (If one of W’s prefixes is another word in the dictionary,
it is stored as a real word.) Although this may seem to increase the size of
the hash table drastically, it does not, because many words have the same
prefixes. When a scan is performed in a particular direction, if the word
that is looked up is not even in the hash table as a prefix, then the scan in
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that direction can be terminated early. Use this idea to write an improved
program to solve the word puzzle.

c. If we are willing to sacrifice the sanctity of the hash table ADT, we can
speed up the program in part (b) by noting that if, for example, we have
just computed the hash function for “excel,” we do not need to compute
the hash function for “excels” from scratch. Adjust your hash function so
that it can take advantage of its previous calculation.

d. In Chapter 2, we suggested using binary search. Incorporate the idea of
using prefixes into your binary search algorithm. The modification should
be simple. Which algorithm is faster?

7.14 Show the result of inserting the keys 10111101, 00000010, 10011011,
10111110, 01111111, 01010001, 10010110, 00001011, 11001111,
10011110, 11011011, 00101011, 01100001, 11110000, 01101111 into
an initially empty extendible hashing data structure with M = 4.

7.15 Write a program to implement extendible hashing. If the table is small

enough to fit in main memory, how does its performance compare with
separate chaining and open addressing hashing?

References

Despite the apparent simplicity of hashing, much of the analysis is quite difficult and
there are still many unresolved questions. There are also many interesting theoretical -
issues, which generally attempt to make it unlikely that the worst-case possibilities
of hashing arise.

An early paper on hashing is [17]. A wealth of information on the subject,
including an analysis of hashing with linear probing, can be found in [11]. An
excellent survey on the subject is [14]; [15] contains suggestions, and pitfalls, for
choosing hash functions. Precise analytic and simulation results for all of the methods
described in this chapter can be found in [8].

An analysis of double hashing can be found in [9] and [13]. Yet another collision
resolution scheme is coalesced hashing, described in [18]. Yao [20] has shown that
uniform hashing, in which no clustering exists, is optimal with respect to cost of a -
successful search.

If the input keys are known in advance, then perfect hash functions, which
do not allow collisions, exist [2], [7]. Some more complicated hashing schemes, for
which the worst case depends not on the particular input but on random numbers
chosen by the algorithm, appear in [3] and [4].

Extendible hashing appears in [5], with analysis in [6] and [19]..

One method of implementing Exercise 7.5 is described in [16]. Exercise 7.11
(a—d) is from [10]. Part (e) is from [12], and part (f) is from [1).

1. R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm,” Communications of
the ACM, 20 (1977), 762-772.

2. J. L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,” Journal of
Computer and System Sciences, 18 (1979), 143-154.



REFERENCES 263

3. M. Dietzfelbinger, A. R. Karlin, K. Melhorn, F. Meyer auf der Heide, H. Rohnert, and
R. E. Tarjan, “Dynamic Perfect Hashing: Upper and Lower Bounds,” SIAM Journal on
Computing, 23 (1994), 738-761.
4, R. J. Enbody and H. C. Du, “Dynamic Hashing Schemes,” Computing Surveys, 20
(1988), 85-113,
5. R. Fagin, ]J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible Hashing—A Fast
Access Method for Dynamic Files,” ACM Transactions on Database Systems, 4 (1979),
315-344.
6. P. Flajolet, “On the Performance Evaluation of Extendible Hashing and Trie Searching,”
Acta Informatica, 20 (1983), 345-369.
7. M. L. Fredman, J. Komlos, and E. Szemeredi, “Storing a Sparse Table with O(1) Worst
Case Access Time,” Journal of the ACM, 31 (1984), 538-544.
8. G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, 2nd
ed., Addison-Wesley, Reading, Mass., 1991.
9. L. J. Guibas and E. Szemeredi, “The Analysis of Double Hashing,” Journal of Computer
and System Sciences, 16 (1978), 226-274.
R. M. Karp and M. O. Rabin, “Efficient Randomized Pattern-Matching Algorithms,”
Aiken Computer Laboratory Report TR-31-81, Harvard University, Cambridge, Mass.,
1981. )
11. D, E. Knuth, The Art of Computer Programming, Vol 3: Sorting and Searching, Addison-
Wesley, Reading, Mass., 1973.

12. D. E. Knuth, J. H. Morris, and V. R, Pratt, “Fast Pattern Matching in Strings,” SIAM
Journal on Computing, 6 (1977), 323-350.

13. G. Lueker and M. Molodowitch, “More Analysis of Double Hashing,” Proceedings of
the Twentieth ACM Sympaosium on Theory of Computing (1988), 354-359.

14. W. D. Maurer and T. G. Lewis, “Hash Table Methods,” Computing Surveys, 7 (1975),
5-20.

15. B. J. McKenzie, R. Harries, and T. Bell, “Selecting a Hashing Algorithm,” Software—
Practice and Experience, 20 (1990), 209-224.

16. R. Morris, “Scatter Storage Techniques,” Communications of the ACM, 11 (1968),
38-44.

17. W. W. Peterson, “Addressing for Random Access Storage,” IBM Journal of Research
and Development, 1 (1957), 130-146.

18. J. S. Vitter, “Implementations for Coalesced Hashing,” Communications of the ACM, 25
(1982), 911-926.

19. A. C. Yao, “A Note on The Analysis of Extendible Hashing,” Information Processing
Letters, 11 (1980), 84-86.

20. A. C. Yao, “Uniform Hashing Is Optimal,” Journal of the ACM, 32 (1985), 687-693.

10






lk

The Disjoint Set ADT

In this chapter, we describe an efficient data structure to solve the equivalence
problem. The data structure is simple to implement. Each routine requires only
a few lines of code, and a simple array can be used. The implementation is also
extremely fast, requiring constant average time per operation. This data structure
is also very interesting from a theoretical point of view, because its analysis is
extremely difficult; the functional form of the worst case is unlike any we have yet
seen. For the disjoint set ApT, we will

® Show how it can be implemented with minimal coding effort.
e Greatly increase its speed, using just two simple observations.
® Analyze the running time of a fast implementation.

@ See a simple application.

8.1. Equivalence Relations
N
A relation R is defined on a set S if for every pair of elements (a,b), 2,b € S,aRb
is ejther true or false. If a R b is true, then we say that a is related to b.
An equivalence relation is a relation R that satisfies three properties:

1. (Reflexive) aRa, foralla € S.
2. (Symmetric) aR b if and only if bR a.
3. (Transitive) aR b and b R ¢ implies thata R c.

We will consider several examples.

The = relationship is not an equivalence relationship. Although it is reflexive,
sinceq =< g, and transitive,sincea < band b = cimpliesa = c, itis not symmetric,
since 2 < b does not imply b = 4.

Electrical connectivity, where all connections are by metal wires, is an equiv-
alence relation. The relation is clearly reflexive, as any component is connected to
itself. If @ is electrically connected to b, then b must be electrically connected to 4, so
the relation is symmetric. Finally, if 4 is connected to b and b is connected to ¢, then
a is connected to ¢. Thus electrical connectivity is an equivalence relation.

CHAPTER 8
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Two cities are related if they are in the same country. It is easily verified that
this is an equivalence relation. Suppose town a is related to b if it is possible to travel
from a to b by taking roads. This relation is an equivalence relation if all the roads
are two-way.

8.2. The Dynamic Equivalence Problem

Given an equivalence relation ~, the natural problem is to decide, for any a and b,
if @ ~ b. If the relation is stored as a two-dimensional array of booleans, then, of
course, this can be done in constant time. The problem is that the relation is usually
not explicitly, but rather implicitly, defined.

As an example, suppose the equivalence relation is defined over the five-element
set {a1,a, a3, a4,as}. Then there are 25 pairs of elements, each of which is either
related or not. However, the information a1 ~ 42, a3 ~ a4, as ~ a1, ds ~ a; implies
that all pairs are related. We would like to be able to infer this quickly.

The equivalence class of an element a € § is the subset of S that contains all the
elements that are related to a. Notice that the equivalence classes form a partition of
S: every member of § appears in exactly one equivalence class. To decide if a ~ b, we
need only to check whether a and b are in the same equivalence class. This provides
our strategy to solve the equivalence problem.

The input is initially a collection of N sets, each with one element. This initial
representation is that all relations (except reflexive relations) are false. Each set has
a different element, so that S; N S; = J; this makes the sets disjoint.

There are two permissible operations. The first is Find, which returns the name
of the set (that is, the equivalence class) containing a given element. The second
operation adds relations. If we want to add the relation @ ~ b, then we first see if a
and b are already related. This is done by performing Finds on both a and b and
checking whether they are in the same equivalence class. If they are not, then we
apply Union. This operation merges the two equivalence classes containing 4 and b
into a new equivalence class. From a set point of view, the result of U is to create a
new set S, = S; U §;, destroying the originals and preserving the disjointness of all
the sets. The algorithm to do this is frequently known as the disjoint set Union/Find
algorithm for this reason.

This algorithm is dynamic because, during the course of the algorithm, the sets
can change via the Union operation. The algorithm must also operate on-line: When
a Find is performed, it must give an answer before continuing. Another possibility
would be an off-line algorithm. Such an algorithm would be allowed to see the
entire sequence of Unions and Finds. The answer it provides for each Find must still
be consistent with all the Unions that were performed up until the Find, but the
algorithm can give all its answers after it has seen all the questions. The difference is
similar to taking a written exam (which is generally off-line—you only have to give
the answers before time expires), and an oral exam (which is on-line, because you
must answer the current question before proceeding to the next question).

Notice that we do not perform any operations comparing the relative values of
elements, but merely require knowledge of their location. For this reason, we can
assume that all the elements have been numbered sequentially from 1 to N and that
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the numbering can be determined easily by some hashing scheme. Thus, initially we
have S; = {i} fori = 1 through N.

Our second observation is that the name of the set returned by Find is actually
fairly arbitrary. All that really matters is that Find(a) = Find(b) if and only if 2 and
b are in the same set.

These operations are important in many graph theory problems and also in com-
pilers which process equivalence (or type) declarations. We will seeanapplication later.

There are two strategies to solve this problem. One ensures that the Find instruc-
tion can be executed in constant worst-case time, and the other ensures that the
Union instruction can be executed in constant worst-case time. It has recently been
shown that both cannot be done simultaneously in constant worst-case time.

We will now briefly discuss the first approach. For the Find operation to be fast,
we could maintain, in an array, the name of the equivalence class for each element.
Then Find is just a simple O(1) lookup. Suppose we want to perform Union(a, b).
Suppose that 4 is in equivalence class i and b is in equivalence class j. Then we scan
down the array, changing all #’s to j. Unfortunately, this scan takes @(N ). Thus, a
sequence of N — 1 Unions (the maximum, since then everything is in one set) would
take ®(N2) time. If there are Q(N?) Find operations, this performance is fine, since
the total running time would then amount to O(1) for each Union or Find operation
over the course of the algorithm. If there are fewer Finds, this bound is not acceptable.

One idea is to keep all the elements that are in the same equivalence class in a
linked list. This saves time when updating, because we do not have to search through
the entire array. This by itself does not reduce the asymptotic running time, because
it is still possible to perform ®(N?2) equivalence class updates over the course of the
algorithm.

If we also keep track of the size of each equivalence class, and when performing
Unions we change the name of the smaller equivalence class to the larger, then the
total time spent for N — 1 merges is O(N log N). The reason for this is that each
element can have its equivalence class changed at most log N times, since every time
its class is changed, its new equivalence class is at least twice as large as its old.
Using this strategy, any sequence of M Finds and up to N — 1 Unions takes at most
O(M + N log N) time.

In the remainder of this chapter, we will examine a solution to the Union/Find
problem that makes Unions easy but Finds hard. Even so, the running time for any
sequence of at most M Finds and up to N — 1 Unions will be only a little more than
O(M + N).

8.3. Basic Data Structure

Recall that the problem does not require that a Find operation return any specific
name, just that Finds on two elements return the same answer if and only if they
are in the same set. One idea might be to use a tree to represent each set, since
each element in a tree has the same root. Thus, the root can be used to name
the set. We will represent each set by a tree. (Recall that a collection of trees is
known as a forest.) Initially, each set contains one element. The trees we will use
are not necessarily binary trees, but their representation is easy, because the only
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information we will need is a parent pointer. The name of a set is given by the node
at the root. Since only the name of the parent is required, we can assume that this
tree is stored implicitly in an array: each entry P[i] in the array represents the parent
of element i. If i is a root, then P[i] = 0. In the forest in Figure 8.1, P[i] = 0 for
1 = i =< 8. As with heaps, we will draw the trees explicitly, with the understanding
that an array is being used. Figure 8.1 shows the explicit representation. We will
draw the root’s parent pointer vertically for convenience.

To perform a Union of two sets, we merge the two trees by making the root
pointer of one node point to the root node of the other tree. It should be clear that
this operation takes constant time. Figures 8.2, 8.3, and 8.4 represent the forest after
each of Union(5,6), Union(7,8), Union(5,7), where we have adopted the convention
that the new root after the Union (X, Y) is X. The implicit representation of the last
forest is shown in Figure 8.5.

A Find(X) on element X is performed by retirning the root of the tree
containing X. The time to perform this operation is proportional to the depth of the
node representing X, assuming, of course, that we can find the node representing
X in constant time. Using the strategy above, it is possible to create a tree of depth
N — 1, so the worst-case running time of a Find is O(N ). Typically, the running time
is computed for a sequence of M intermixed instructions. In this case, M consecutive
operations could take O(M N ) time in the worst case.

The code in Figures 8.6 through 8.9 represents an implementation of the basic
algorithm, assuming that error checks have already been performed. In our routine,
Unions are performed on the roots of the trees. Sometimes the operation is performed
by passing any two elements, and having the Union perform two Finds to determine
the roots.

The average-case analysis is quite hard to do. The least of the problems is that
the answer depends on how to define average (with respect to the Union operation).
For instance, in the forest in Figure 8.4, we could say that since there are five trees,
there are 5 -4 = 20 equally likely results of the next Unjon (as any two differ-
ent trees can be Unioned). Of course, the implication of this model is that there is only

Figure 8.1 Eight elements, initially in different sets

OOOHOO b6

Figure 8.2 After Union(S, 6)

5834 b¢
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ééééébéb

Figure 8.3 After Union(7, 8)

éééé%NN

Figure 8.4 After Union(s,7)

0 0 0 0
3 4 5

Figure 8.5 Implicit representation of previous tree

#ifndef _DisjSet_H

typedef int DisjSet[ NumSets + 1 ];
typedef int SetType;
typedef int ElementType;

void Initilialize( DisjSet S );
void SetUnion( DisjSet S, SetType Rootl, SetType Root2 );
SetType Find( ElementType X, DisjSet S );

#endif /% _DisjSet_H */

Figure 8.6 Disjoint set type declaration
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void
Initialize( DisjSet S)
{
' int i;
for( i = NumSets; i > 0; i-- )
St i]=0;
}

Figure 8.7 Disjoint set initialization routine

/* Assumes Rootl and Root2 are roots «*/
/* union is a C keyword, so this routine */
/* is named SetUnion */

void
SetUnion( DisjSet S, SetType Rootl, SetType Root2 )

S[ Root2 ] = Rootl;
}

Figure 8.8 Unjon (not the best way)

SetType
Find( ElementType X, DisjSet S )

ifFCSEX ] <=0)
return X;
else .
return FindC ST X 1, S );
}

Figure 8.9 A simple disjoint set Find algorithm

a % chance that the next Union will involve the large tree. Another model might say

that all Unions between any two elements in different trees are equally likely, so a
larger tree is more likely to be involved in the next Union than a smaller tree. In
the example above, there is an £ chance that the large tree is involved in the next
union, since (ignoring symmetries) there are 6 ways in which to merge two elements
in {1,2, 3,4}, and 16 ways to merge an element in {5, 6, 7, 8} with an element in
{1,2, 3,4}. There are still more models and no general agreement on which is the
best. The average running time depends on the model; ®(M), &(M log N), and
®(M N) bounds have actually been shown for three different models, although the
latter bound is thought to be more realistic.

Quadratic running time for a sequence of operations is generally unacceptable.
Fortunately, there are several ways of easily ensuring that this running time does not
occur. :



8.4. SMART UNION ALGORITHMS

8.4. Smart Union Algorithms

The Unions above were performed rather arbitrarily, by making the second tree
a subtree of the first. A simple improvement is always to make the smaller tree a
subtree of the larger, breaking ties by any method; we call this approach union-by-
size. The three Unions in the preceding example were all ties, and'so we can consider
that they were performed by size. If the next operation were Union(4, 5), then the
forest in Figure 8.10 would form. Had the size heuristic not been used, a deeper tree
would have been formed (Fig. 8.11).

Figure 8.10 Result of union-by-size

ofc¥o

Figure 8,11 Result of an arbitrary Union *

ORoRoRo

Figure 8.12 Worst-case tree for N = 16
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We can prove that if Unions are done by size, the depth of any node is never
more than logN. To sce this, note that a node is initially at depth 0. When its
depth increases as a result of a Union, it is placed in a tree that is at least twice as
large as before. Thus, its depth can be increased at most log N times. (We used this
argument in the quick-find algorithm at the end of Section 8.2.) This implies that
the running time for a Find operation is O(log N), and a sequence of M operations

~ takes O(M log N). The tree in Figure 8:12 shows the worst tree possible after 16
Unions and is obtained if all Unions are between equal-sized trees (the worst-case
trees are binomial trees, discussed in Chapter 5). :

To implement this strategy, we need to keep track of the size of each tree. Since
we are really just using an array, we can have the array entry of each root contain
the negative of the size of its tree. Thus, initially the array representation of the
tree is all —1s (and Figure 8.7 needs to be changed accordingly). When a Union is
performed, check the sizes; the new size is the sum of the old. Thus, union-by-size
is not at all difficult to implement and requires no extra space. It is also fast, on
average. For virtually all reasonable models, it has been shown that a sequence of
M operations requires O(M) average time if union-by-size is used. This is because
when random Unions are performed, generally very small (usually one-element) sets
are merged with large sets throughout the algorithm.

An alternative implementation, which also guarantees that all the trees will have
depth at most O(log N), is union-by-height. We keep track of the height, instead of
the size, of each tree and perform Unions by making the shallow tree a subtree of
the deeper tree. This is an easy algorithm, since the height of a tree increases only
when two equally deep trees are joined (and then the height goes up by one). Thus,
union-by-height is a trivial modification of union-by-size.

The following figures show a tree and its implicit representation for both union-
by-size and union-by-height. The code in Figure 8.13 implements union-by-height.

ofclo ;

-1 -1 -1 5 -5 5 5 7
1 2 3 4 5 6 7 8
0 0 0 -2 5 5 7
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/* Assume Rootl and Root2 are roots *{
/* union is a C keyword, so this routine */
/* is named SetUnion */

void
SetUnion( DisjSet S, SetType Rootl, SetType Root2 )

if( S[ Root2 ] < S[ Rootl ] ) /* Root2 is deeper set */
S[ Rootl ] = Root2; /* Make Root2 new root */
else
{
if( S[ Rootl ] == S[ Root2 ] ) /* Same height, */
S{ Rootl J--; /* so update */
S[ Root2 ] = Rootl; )

}

Figure 8.13 Code for Union-by-height (rank)

8.5. Path Compression

The Union/Find algorithm, as described so far, is quite acceptable for most cases.
It is very simple and linear on average for a sequence of M instructions (under
all models). However, the worst case of O(M log N) can occur fairly easily and
naturally. For instance, if we put all the sets on a queue and repeatedly dequeue the
first two sets and enqueune the union, the worst case occurs. If there are many more
Finds than Unions, this running time is worse than that of the quick-find algorithm.
Moreover, it should be clear that there are probably no more improvements possible
for the Union algorithm. This is based on the observation that any method to
petform the unions will yield the same worst-case trees, since it must break ties
arbitrarily. Therefore, the only way to speed the algorithm up, without reworking
the data structure entirely, is to do something clever on the Find operation.

The clever operation is known as path compression. Path compression is per-
formed during a Find operation and is independent of the strategy used to perform
Unions. Suppose the operation is Find(X). Then the effect of path compression is
that every node on the path from X to the root has its parent changed to the root.
Figure 8.14 shows the effect of path compression after Find(15) on the generic worst
tree of Figure 8.12.

The effect of path compression is that with an extra two pointer moves, nodes
13 and 14 are now one position closer to the root and nodes 15 and 16 are now two
positions closer. Thus, the fast future accesses on these nodes will pay (we hope) for
the extra work to do the path compression.

As the code in Figure 8.15 shows, path compression is a trivial change
to the basic Find algorithm. The only change to the Find routine is that S[X]
is made equal to the value returned by Find; thus after the root of the set
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Figure 8.14 An example of path compression

SetType
Find( ElementType X, DisjSet S )

ifCS[X]<=0)

return X;
else
return S[ X ] = Find( SL X 1, S );
}
Figure 8.15 Code for disjoint set Find with path com-

pression

is found recursively, X is made to point directly to it. This occurs recursively to every
node on the path to the root, so this implements path compression.

When Unions are done arbitrarily, path compression is a good idea, because
there is an abundance of deep nodes and these are brought near the root by path
compression. It has been proven that when path compression is done in this case,
a sequence of M operations requires at most O(M log N) time. It is still an open
problem to determine what the average-case behavior is in this situation.

Path compression is perfectly compatible with union-by-size, and thus both
routines can be implemented at the same time. Since doing union-by-size by itself
is expected to execute a sequence of M operations in linear time, it is not clear
that the extra pass involved in path compression is worthwhile on average. Indeed,
this problem is still open. However, as we shall see later, the combination of path
compression and a smart union rule guarantees a very efficient algorithm in all cases.

Path compression is not entirely compatible with union-by-height, because path
compression can change the heights of the trees. It is not at all clear how to recompute
them efficiently. The answer is do not!! Then the heights stored for each tree become
estimated heights (sometimes known as ranks), but it turns out that union-by-rank
(which is what this has now become) is just as efficient in theory as union-by-size.
Furthermore, heights are updated less often than sizes. As with union-by-size, it is
not clear whether path compression is worthwhile on average. What we will show
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in the next section is that with either union heuristic, path compression significantly
reduces the worst-case running time.

8.6. Worst Case for Union-by-Rank and Path Compression

When both heuristics are used, the algorithm is almost linear in the worst case.
Specifically, the time required in the worst case is @(M a(M, N))) (provided M = N),
where a(M, N) is a functional inverse of Ackermann’s function, which is defined
below:!

A(l,j) =2 forj =1

A(i,1) = A(i —1,2)fori =2

A(i,j) = Ali — 1,A(i,j — 1)) fori,j =2
From this, we define

a(M,N) = min{i = 1}A(i,|M/N]) > logN}

You may want to compute some values, but for all practical purposes,
a(M,N) = 4, which is all that is really important here. The single-variable in-
verse Ackermann function, sometimes written as log” N, is the number of times the
logarithm of N needs to be applied until N =< 1. Thus, log® 65536 = 4, because
loglogloglog 65536 = 1.log" 265536 = §, but keep in mind that 26553 js a 20,000-
digit number. @(M, N) actually grows even slower then log* N. However, a(M, N)
is not a constant, so the running time is not linear.

In the remainder of this section, we will prove a slightly weaker result. We
will show that any sequence of M = Q(N) Union/Find operations takes a total of
O(M log" N) running time. The same bound holds if union-by-rank is replaced with
union-by-size. This analysis is probably the most complex in the book and one of
the first truly complex worst-case analyses ever performed for an algorithm that is
essentially trivial to implement.

8.6.1. Analysis of the Union/Find Algoritbm

In this section we establish a fairly tight bound on the running time of a sequence of
M = Q(N) Union/Find operations. The Unjons and Finds may occur in any order,
but Unions are done by rank and Finds are done with path compression.

We begin by establishing some lemmas concerning the number of nodes of rank
r. Intuitively, because of the union-by-rank rule, there are many more nodes of small
rank than large rank. In particular, there can be at most one node of rank logN.
What we would like to do is to produce as precise a bound as possible on the num-
ber of nodes of any particular rank r. Since ranks only change when Unions are

¥ Ackermann’s fupgtion is frequently defined with A(1, ) = j + 1 for j = 1. The form in this text grows
faster; thus, the inverse grows more slowly.

275



276 CHAPTER S/THE DISJOINT SET aor

performed (and then only when the two trees have the same rank), we can prove
this bound by ignoring the path compression.

LEMMA 8.1.
When executing a sequence of Union instructions, a node of rank r must have
at least 2" descendants (including itself).

PROOF

By induction. The basis, r = 0, is clearly true. Let T be the tree of rank 7 with
the fewest number of descendants and let X be T’s root. Suppose the last Union
X was involved in was between T} and T;. Suppose Ti’s root was X. If T; had
rank 7, then T; would be a tree of height r with fewer descendants than T,
which contradicts the assumption that T is the tree with the smallest number
of descendants. Hence the rank of Ty < r — 1, The rank of T, < rank of Th.
Since T has rank r and the rank could only increase because of T, it follows
that the rank of T, = r — 1. Then the rank of T; = r — 1. By the induction
hypothesis, each tree has at least 2"~! descendants, giving a total of 2" and
establishing the lemma.

Lemma 8.1 tells us that if no path compression is performed, then any node
of rank r must have at least 2" descendants. Path compression can change this, of
course, since it can remove descendants from a node. However, when Unions are
performed, even with path compression, we are using the ranks, which are estimated
heights. These ranks behave as though there is no path compression. Thus, when
bounding the number of nodes of rank r, path compression can be ignored.

Thus, the next lemma is valid with or without path compression.

mMMA 8.2.
The number of nodes of rank r is at most N/2'.

PROOF ’

Without path compression, each node of rank  is the root of a subtree of at
least 2" nodes. No node in the subtree can have rank r. Thus all subtrees of
nodes of rank r are disjoint. Therefore, there are at most N/27 disjoint subtrees
and hence N /2" nodes of rank r.

The next lemma seems somewhat obvious but is crucial in the analysis.

LEMMA 8.3.

At any point in the Union/Find algorithm, the ranks of the nodes on a path
from the leaf to a root increase monotonically.

PROOP

The lemma is obvious if there is no path compression (see the example). If, after
path compression, some node v is a descendant of w, then clearly v must have
been a descendant of w when only Unions were considered. Hence the rank of
v is less than the rank of w.

Let us summarize the preliminary results. Lemma 8.2 tells us how many nodes
can be assigned rank r. Because ranks are assigned only by Unioms, which have
no idea of path compression, Lemma 8.2 is valid at any stage of the Union/Find
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algorithm—even in the midst of path compression. Figure 8.16 shows that while
there are many nodes of ranks 0 and 1, there are fewer nodes of rank r as r gets
larger.

© Lemma 8.2 is tight, in the sense that it is possible for there to be N/2" nodes for
any rank r. It is slightly loose, because it is not possible for the bound to hold for all
ranks 7 simultaneously. While Lemma 8.2 describes the number of nodes in a rank
r, Lemma 8.3 tells us their distribution. As one would expect, the rank of nodes is
strictly increasing along the path from a leaf to the root.

We are now ready to prove the main theorem. Our basic idea is as follows: A
Find on any node v costs time proportional to the number of nodes on the path from
v to the root. Let us, then, charge one unit of cost for every node on the path from v
to the root for each Find. To help us count the charges, we will deposit an imaginary
penny into each node on the path. This is strictly an accounting gimmick, which is
not part of the program. When the algorithm is over, we collect all the coins that
have been deposited; this is the total cost. .

As a further accounting gimmick, we deposit both American and Canadian
pennies. We will show that during the execution of the algorithm, we can deposit
only a certain number of American pennies during each Find. We will also show
that we can deposit only a certain number of Canadian pennies to each node.
Adding these two totals gives us a bound on the total number of pennies that can be
deposited.

We now sketch our accounting scheme in a little more detail. We will divide the
nodes by their ranks. We then divide the ranks into rank groups. On each Find, we
will deposit some American coins into the general kitty and some Canadian coins
into specific vertices. To compute the total number of Canadian coins deposited, we
will compute the deposits per node. By adding up all the deposits for each node
in rank 7, we will get the total deposits per rank . Then we will add up all the
deposits for each rank 7 in group g and thereby obtain the total deposits for each
rank group g. Finally, we add up all the deposits for each rank group g to obtain the
total number of Canadian coins deposited in the forest. Adding this to the number
of American coins in the kitty gives us the answer.

We will partition ranks into groups. Rank r goes into group G(r), and G will be
determined later. The largest rank in any rank group gis F(g), where F = G~ 1is the

Figure 8.16 A large disjoint set tree (numbers below nodes are ranks)

277



278

CHAPTER 8/THE DISJOINT SET aor

inverse of G. The number of ranks in any rank group, g > 0, is thus F(g) — F(g — 1).
Clearly G(N) is a very loose upper bound on the largest rank group. As an example,
suppose that we partitioned the ranks as in Figure 8.17. In this case, G(r) = [ /7.
The 1argest rank in group g is F(g) = g2, and observe that group g > 0 contains
ranks F(g — 1) + 1 through F(g) inclusive. This formula does not apply for rank
group 0, so for convenience we will ensure that rank group 0 contains only elements
of rank 0. Notice that the groups are made of consecutive ranks. '

As mentioned before, each Union instruction takes constant time, as long as
each root keeps track of how big its subtrees are. Thus, Unjons are essentially free,
as far as this proof goes.

Each Find(i) takes time propottional to the number of vertices on the path from
the vertex representing i to the root. We will thus deposit one penny for each vertex
on the path. If this is all we do, however, we cannot expect much of a bound,
because we are not taking advantage of path compression. Thus, we need to take
advantage of path compression in our analysis. We will use fancy accounting.

For each vertex, v, on the path from the vertex representing i to the root, we
deposit one penny under one of two accounts:

1. If v is the root, or if the parent of v is the root, or if the parent of v is in
a different rank group from v, then charge one unit under this rule. This
deposits an American penny into the kitty.

2. Otherwise deposit 2 Canadian penny into the vertex.

LEMMA 8.4.

For any Find(v), the total number of pennies deposited, either into the kitty or
into a vertex, is exactly equal to the number of nodes on the path from v to the
root. h

PROOF
Obvious.

Thus all we need to do is to sum all the American pénnies deposited under rule
1 with all the Canadian pennies deposited under rule 2.

We are doing at most M Finds. We need to bound the number of pennies that
can be deposited into the kitty during a Find.

Figure 8.17 Possible partitioning of ranks into groups

Group Rank
0 0 -
1 1
2 2,34
3 S through 9
4 10 through 16
i (i — 1)* + 1 through 2
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LEMMA 8.5.
Over the entire algorithm, the total deposits of American pennies under rule 1
amount to M(G(N) + 2).

PROOF

This is easy. For any Find, two American pennies are deposited, because
of the root and its child. By Lemma 8.3, the vertices going up the path are
monotonically increasing in rank, and since there are at most G(N ) rank groups,
only G(N) other vertices on the path can qualify as a rule 1 deposit for any
particular Find. Thus, during any one find, at most G(N ) + 2 American pennies
can be placed in the kitty. Thus, at most M(G(N) + 2) American pennies can
be deposited under rule 1 for a sequence of M Finds.

To get a good estimate for all the Canadian deposits under rule 2, we will add
up the deposits by vertices instead of by Find instructions. If a coin is deposited into
vertex v under rule 2, v will be moved by path compression and get a new parent
of higher rank than its old parent. (This is where we are using the fact that path
compression is being done.) Thus, a vertex v in rank group g > 0 can be moved at
most F{g) — F(g — 1) times before its parent gets pushed out of rank group g, since
that is the size of the rank group.Jr After this happens, all future charges to v will go
under rule 1.

v
LEMMA 8.6.

The number of vertices, V(g), in rank group g > 0 is at most N/2F(&=1),
PROOF

By Lemma 8.2, there are at most N/2" vertices of rank r. Summing over the
ranks in group g, we obtain

F(g} N
Vig) = 3
r=F(g—1)+1

=z N
r=F(g—-1)+1 2

a '1

N > 5
r=F(g-1)+1

N =1
= 2F(g-1)+1 Zo 2s
s=

2N
o —
= JF(g-1)+1

N
— )F(g-1)

IA

T This can be reduced by 1. We do not for the sake of clarity; the bound is not improved by being more
careful here.
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LEMMA 8.7.
The maximum number of Canadian pennies deposited to all vertices in rank
group g is at most N F(g)/2F&~1),

PROOF

Each vertex in the rank group can receive at most F(g) — F(g — 1) = F(g)
Canadian pennies while its parent stays in its rank group, and Lemma 8.6
tells how many such vertices there are. The result is obtained by a simple
multiplication. :

LEMMA 8.8
The total deposit under rule 2 is at most N ZSLA{)F(g)/ZF -1 Canadian
pennies.

PROOF

Because rank group O contains only elements of rank 0, it cannot contribute to
rule 2 charges (it cannot have a parent in the same rank group). The bound is
obtained by summing the other rank groups.

Thus we have the deposits under rules 1 and 2. The total is

G(N)
M(G(N)+2)+ N > F(gfe (8.1)
g=1

We still have not specified G(N) or its inverse F(N ). Obviously, we are free to

choose virtually anything we want, but it makes sense to choose G(N') to minimize
the bound above. However, if G(N) is too small, then F(N ) will be large, hurting the
bound. An apparently good choice is to choose F(i) to be the function recursively
defined by F(0) = 0 and F(i) = 2F0~1_ This gives G(N) = 1 + [log" N|. Figure
8.18 shows how this partitions the ranks. Notice that group 0 contains only rank
0, which we required in the previous lemma. F is very similar to the single-variable
Ackermann function, which differs only in the definition of the base case (F(0) = 1).

Figure 8.18 Actual partitioning of ranks into groups

used in the proof

Group Rank
0 0
1 1
2 2
3 3,4
4 5 through 16
5 17 through 216
6 65537 through 265536
7 truly huge ranks




SUMMARY

THEOREM 8.1.
The running time of M Unions and Finds is O(M log" N).

PROOF

Plug in the definitions of Fand G into Equatlon (8.1). The total number of Amer-
ican pennies is O(M G(N)) = O(M log N). The total number of Canadian pen-
nies is N 3 5% F(g)/2Fe~ = N S50 1 = NG(N) = O(N log” N). Since
M = Q(N), the bound follows.

What the analysis shows is that there are few nodes that could be moved fre-
quently by path compression, and thus the total time spent is relatively small.

8.7. An Application

As an example of how this data structure might be used, consider the following
problem. We have a network of computers and a list of bidirectional connections;
each of these connections allows a file transfer from one computer to another. Is it
possible to send a file from any computer on the network to any other? An extra
restriction is that the problem must be solved on-line. Thus, the list of connections
is presented one at a time, and the algorithm must be prepared to give an answer at
any point.

An algorithm to solve this problem can initially put every computer in its own
set. Our invariant is that two computers can transfer files if and only if they are
in the same set. We can see that the ability to transfer files forms an equivalence
relation. We then read connections one at a time. When we read some connection,
say (u, v), we test to see whether # and v are in the same set and do nothing if they
are. If they are in different sets, we merge their sets. At the end of the algorithm, the
graph is connected if and only if there is exactly one set. If there are M connections
and N computers, the space requirement is O(N). Using union-by-size and path
compression, we obtain a worst-case running time of O(M a(M, N )), since there are
2M Finds and at most N — 1 Unions. This running time is linear for all practical
purposes.

We will see a much better application in the next chapter.

Summary

We have seen a very simple data structure to maintain disjoint sets. When the Union
operation is performed, it does not matter, as far as correctness is concerned, which
set retains its name. A valuable lesson that should be learned here is that it can
be very important to consider the alternatives when a particular step is not totally
specified. The Urnion step is flexible; by taking advantage of this, we are able to get
a much more efficient algorithm.

Path compression is one of the earliest forms of self-adjustment, which we have
seen elsewhere (splay trees, skew heaps). Its use is extremely interesting, especially
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from a theoretical point of view, because it was one of the first examples of a simple
algorithm with a not-so-simple worst-case analysis.

Exercises

8.1

8.2

8.3

8.4

8.5

8.6

Show the result of the following sequence of instructions: Umnion(1,2),
Union(3, 4), Union(3, 5), Union(1,7), Union(3, 6), Union(8,9), Union(1, 8),
Union(3,10), Union(3,11), Union(3,12), Union(3,13), Union(14,15),
Union(16,17), Union(14,16), Union(1, 3), Union(1,14) when the Unions
are:

a. Performed arbitrarily.

b. Performed by height.

c. Performed by size.

For each of the trees in the previous exercise, perform a Find with path
compression on the deepest node.

Write a program to determine the effects of path compression and the var-
ious Unioning strategies. Your program should process a long sequence of
equivalence operations using all six of the possible strategies.

Show that if Unions are performed by height, then the depth of any tree is

O(log N).

a. Show that if M = N2, then the running time of M Union/Find operations
is O(M).

b. Show that if M = NlogN, then the running time of M Union/Find
operations is O(M ).

c. Suppose M = O(N loglog N). What is the running time of M Union/Find
operations?

*d. Suppose M = O(N log” N). What is the running time of M Union/Find
operations?

Show the operation of the program in Section 8.7 on the following graph:
(1,2), (3,4), (3,6), (5,7), (4,6), (2,4), (8,9), (5,8). What are the connected
components?

8.7 Write a program to implement the algorithm in Section 8.7.

*8.8

Suppose we want to add an extra operation, Deunion, which undoes the last
Union operation that has not been already undone.

" a. Show that if we do union-by-height and Finds without path compression,

¥

then Deunion is easy and a sequence of M Union, Find, and Deunion
operations takes O(M log N) time.

b. Why does path compression make Deunion hard?

*c. Show how to implement all three operations so that the sequence of M

operations takes O(Mlog N/loglog N ) time.
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*8.9 Suppose we want to add an extra operation, Remove(X), which removes
X from its current set and places it in its own. Show how to modify the
Union/Find algorithm so that the running time of a sequence of M Union,
Find, and Remove operations is O(M a(M, N)). .

*8.10 Give an algorithm that takes as input an N-vertex tree and a list of N pairs of
vertices and determines for each pair (v, ) the closest common ancestor of v
and w. Your algorithm should run in O(N log” N).

*8.11 Show that if all of the Unions precede the Finds, then the disjoint set algorithm
with path compression requires linear time, even if the Unions are done
arbitrarily.

*8.12 Prove that if Unions are done arbitrarily, but path compression is performed
on the Finds, then the worst-case running time is ®(M log N ).

8.13 Prove that if Unions are done by size and path compression is performed, the
worst-case running time is O(M log" N ).

8.14 Suppose we implement partial path compression on Find(i) by making every
other node on the path from 7 o the root pomt to:its grandparent (where this
makes sense). This is known as path halumg /
a. Write a procedure to do this. =

b. Prove that if path halving is performed on the Fmds and elther unlon-by-
height or union-by-size is used, the wnrst-case runnmg tlm"_ 1sOM log N )
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CHAPTER 9

Graph Algorithms

In this chapter we discuss several common problems in graph theory. Not only are
these algorithms useful in practice, they are interesting because in many real-life
applications they are too slow unless careful attention is paid to the choice of data
structures. We will

e Show several real-life problems, which can be converted to problems on
graphs.
¢ Give algorithms to solve several common graph problems.

e Show how the proper choice of data structures can drastically reduce the
running time of these algorithms.

¢ See an important technique, known as depth-first search, and show how it
“can be used to solve several seemingly nontrivial problems in linear time.

'9.1. Definitions

A graph G = (V,E) consists of a set of vertices, V, and a set of edges, E. Each
edge is a pair (v, w), where v, w € V. Edges are sometimes referred to as arcs. If the
pair is ordered, then the graph is directed. Directed graphs are sometimes referred
to as digraphs. Vertex w is adjacent to v if and only if (v, w) € E. In an undirected
graph with edge (v, w), and hence (w, v), w is adjacent to v and v is adjacent to w.
Sometimes an edge has a third component, known as either a weight or a cost.

A path in a graph is a sequence of vertices w1y, ws,ws3,...,wN such that
(wi,wi+1) E Efor 1 = i < N. The length of such a path is the number of edges on
the path, which is equal to N — 1. We allow a path from a vertex to itself; if this
path contains no edges, then the path length is 0. This is a convenient way to define
an otherwise special case. If the graph contains an edge (v, v) from a vertex to itself,
then the path v, v is sometimes referred to as a loop. The graphs we will consider
will generally be loopless. A simple path is a path such that all vertices are distinct,
except that the first and last could be the same.

A cycle in a directed graph is a path of length at least 1 such that w; = wy; this
cycle is simple if the path is simple. For undirected graphs, we require that the edges
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be distinct. The logic of these requirements is that the path #, v, # in an undirected
graph should not be considered a cycle, because (, v) and (v, #) are the same edge.
In a directed graph, these are different edges, so it makes sense to call this a cycle.
A directed graph is acyclic if it has no cycles. A directed acyclic graph is sometimes
referred to by its abbreviation, DAG.

An undirected graph is connected if there is a path from every vertex to every
other vertex. A directed graph with this property is called strongly connected. If a
directed graph is not strongly connected, but the underlying graph (without direction
to the arcs) is connected, then the graph is said to be weakly connected. A complete
graph is a graph in which there is an edge between every pair of vertices.

An example of a real-life situation that can be modeled by a graph is the airport
system. Each airport is a vertex, and two vertices are connected by an edge if there
is a nonstop flight from the airports that are represented by the vertices. The edge
could have a weight, representing the time, distance, or cost of the flight. It is
reasonable to assume that such a graph is directed, since it might take longer or cost
more (depending on local taxes, for example) to fly in different directions. We would
probably like to make sure that the airport system is strongly connected, so that it
is always possible to fly from any airport to any other airport. We might also like to
quickly determine the best flight between any two airports. “Best” could mean the
path with the fewest number of edges or could be taken with respect to one, or all,
of the weight measures. ‘

Traffic flow can be modeled by a graph. Each street intersection represents a
vertex, and each street is an edge. The edge costs could represent, among other
things, a speed limit or a capacity (number of lanes). We could then ask for the
shortest route or use this information to find the most likely location for bottlenecks.

In the remainder of this chapter, we will see several more applications of graphs.
Many of these graphs can be quite large, so it is important that the algorithms we
use be efficient.

9.1.1. Representation of Graphs

We will consider directed graphs (undirected graphs are similarly represented).
Suppose, for now, that we can number the vertices, starting at 1. The graph
shown in Figure 9.1 represents 7 vertices and 12 edges.
One simple way to represent a graph is to use a two-dimensional array.
This is known as an adjacency matrix representation. For each edge (u, v), we set

. A{u][v] = 1; otherwise the entry in the array is 0. If the edge has a weight associated

with it, then we can set A[#][v] equal to the weight and use either a very large or
a very small weight as a sentinel to indicate nonexistent edges. For instance, if we
were looking for the cheapest airplane route, we could represent nonexistent flights
with a cost of . If we were looking, for some strange reason, for the most expensive
airplane route, we could use —= (or perhaps 0) to represent nonexistent edges.
Although this has the merit of extreme simplicity, the space requirement is
O(|V[?), which can be prohibitive if the graph does not have very many edges. An ad-
jacency matrix is an appropriate representation if the graph is dense: |[E| = O(|V]?).
In most of the applications that we shall see, this is not true. For instance, suppose the
graph represents a street map. Assume a Manhattan-like orientation, where almost
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Figure 9.1 A directed graph

all the streets run either north-south or east-west. Therefore, any intersection is
attached to roughly four streets, so if the graph is directed and all streets are two-
way, then |E| = 4|V|. If there are 3,000 intersections, then we have a 3,000-vertex
graph with 12,000 edge entries, which would require an array of size 9,000,000.
Most of these entries would contain zero. This is intuitively bad, because we want
our data structures to represent the data that are actually there and not the data that
are not present.

If the graph is not dense, in other words, if the graph is sparse, a better solution
is an adjacency list representation. For each vertex, we keep a list of all adjacent
vertices. The space requirement is then O(|E| + |V|). The leftmost structure in Figure
9.2 is merely an array of header cells. The representation should be clear from Figure
9.2. If the edges have weights, then this additional information is also stored in the
cells.

Adjacency lists are the standard way to represent graphs. Undirected graphs
can be similarly represented; each edge (x, v) appears in two lists, so the space usage
essentially doubles. A common requirement in graph algorithms is to find all vertices
adjacent to some given vertex v, and this can be done, in time proportional to the
number of such vertices found, by a simple scan down the appropriate adjacency list.

In most real-life applications, the vertices have names, which are unknown at
compile time, instead of numbers. Since we cannot index an array by an unknown
name, we must provide a mapping of names to numbers. The easiest way to do this
is to use a hash table, in which we store a name and an internal number ranging
from 1 to |V/| for each vertex. The numbers are assigned as the graph is read. The
first number assigned is 1. As each edge is input, we check whether each of the two
vertices has been assigned a number, by seeing if it is in the hash table. If so, we use
the internal number. Otherwise, we assign to the vertex the next available number
and insert the vertex name and number into the hash table.

With this transformation, all the graph algorithms will use only the internal
numbers. Since eventually we will need to output the real vertex names and not the
internal numbers, we must also record, for each internal number, the corresponding
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1 2 4 3 "
2 4 5 o
3 6 |+
4 6 7 3 —1
5 4 7 1
6 T2
7 6 |4+—=

Figure 9.2 An adjacency list representation of a graph

vertex name. One way is to use an array of strings. If the vertex names are long,
this can cost considerable space, because the vertex names are stored twice. An
alternative is to keep an array of pointers into the hash table. The price of this
alternative is a slight loss of the sanctity of the hash table ApT (elements in the hash
table are accessible by means other than basic hash table operations).

The code that we present in this chapter will be pseudocode using ApTs as much
as possible. We will do this to save space and, of course, to make the algorithmic
presentation of the algorithms much clearer.

9.2. Topological Sort

A topological sort is an ordering of vertices in a directed acyclic graph, such that if
there is a path from v; to v;, then v; appears after v; in the ordering. The graph in
Figure 9.3 represents the course prerequisite structure at a state university in Miami.
A directed edge (v, w) indicates that course v must be completed before course w
may be attempted. A topological ordering of these courses is any course sequence
that does not violate the prerequisite requirement.

It is clear that a topological ordering is not possible if the graph has a cycle, since
for two vertices v and w on the cycle, v precedes w and w precedes v. Furthermore,
the ordering is not necessarily unique; any legal ordering will do. In the graph in
Figure 9.4, v1, v2, vs, va, v3, v7, vg and vy, v2, vs, V4, v7, v3, V6 are both topological
orderings.
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MAD3512

Vg V7

Figure 9.4 An acyclic graph

A simple algorithm to find a topological ordering is first to find any vertex with
no incoming edges. We can then print this vertex, and remove it, along with its
edges, from the graph. Then we apply this same strategy to the rest of the graph.

To formalize this, we define the indegree of a vertex v as the number of edges
(#,v). We compute the indegrees of all vertices in the graph. Assuming that the
Indegree array is initialized and that the graph is read into an adjacency list, we can
then apply the algorithm in Figure 9.5 to generate a topological ordering.

The function FindNew VertexOfIndegreeZero scans the Indegree array looking
for a vertex with indegree 0 that has not already been assigned a topological number.
It returns NozAVertex if no such vertex exists; this indicates that the graph has a
cycle.

289



290

CHAPTER 9/GRAPH ALGORITHMS

void
Topsort( Graph G )
{
int Counter;
Vertex V, W;

for( Counter = 0; Counter < NumVertex; Counter++ )
{
V = FindNewVertexQfDegreeZero( );
if ( V == NotAVertex )
{
Error( "Graph has a cycle” );
break;

}

TopNum[ V ] = Counter;

for each W adjacent to V
Indegree[ W J--;

}

Figure 9.5 Simple topological sort pseudocode

Because FindNewVertexOfIndegreeZero is a simple sequential scan of the
Indegree array, each call to it takes O(|V|) time. Since there are |V| such calls, the
running time of the algorithm is O(|V|?).

By paying more careful attention to the data structures, it is possible to do better.
The cause of the poor running time is the sequential scan through the Indegree array.
If the graph is sparse, we would expect that only a few vertices have their indegrees
updated during each iteration. However, in the search for a vertex of indegree 0, we
look at (potentially) all the vertices, even though only a few have changed.

We can remove this inefficiency by keeping all the (unassigned) vertices of
indegree O in a special box. The FindNewVertexOfIndegreeZero function then
returns (and removes) any vertex in the box. When we decrement the indegrees of
the adjacent vertices, we check each vertex and place it in the box if its indegree falls
to 0.

To implement the box, we can use either a stack or a queue. First, the indegree
is computed for every vertex. Then all vertices of indegree 0 are placed on an initially
empty queue. While the queue is not empty, a vertex v is removed, and all edges
adjacent to v have their indegrees decremented. A vertex is put on the queue as soon
as its indegree falls to 0. The topological ordering then is the order in which the
vertices dequeue. Figure 9.6 shows the status after each phase.

A pseudocode implementation of this algorithm is given in Figure 9.7. As before,
we will assume that the graph is already read into an adjacency list and that the
indegrees are computed and placed in an array. A convenient way of doing this in
practice would be to place the indegree of each vertex in the header cell. We also
assume an array TopNum, in which to place the topological numbering.
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Indegree Before Dequeue #

Vertex 1 2 3 4 5 6 7
v 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0
V3 2 1 1 1 0 0 0
Vs 3 2 1 0 0 0 0
vs 1 1 0 0 0 0 0
Ve 3 3 3 3 2 1 0
vy 2 2 2 1 0 0 0

Enquene vy v vs V4 V3, vy vg

Dequeue " v Us V4 v3 vy Ve

Figure 9.6 Result of applying topological sort to the

graph in Figure 9.4

/*
/'k
/*
/*

/*

/*
/*
/*
/*

1*/
2*/
3%/
4%/

5*/

6*/
7%/

8*/
9%/

/*10%/

/*11*/
/*12%/

< /*13%/

void

Topsort( Graph G );

{

Queue Q;
int Counter = 0;
Vertex V, W;

Q = CreateQueue( NumVertex ); MakeEmpty( Q );
for each vertex V
if( Indegree[ V] == 0 )
Enqueue( V, Q );

while( !IsEmpty( Q ) )

{
V = Dequeue( Q );
TopNum[ V ] = ++Counter; /*Assign next number */
for each W adjacent to V
if( --Indegree[ W] == 0 )
Enqueue( W, Q );
}

if ( Counter != NumVertex )
Error( "Graph has a cycle" );

DisposeQueue( Q );: /* Free the memory */

Figure 9.7 Pseudocode to perform topological sort
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The time to perform this algorithm is O(|E| + |V} if adjacency lists are used.
This is apparent when one realizes that the body of the for loop is executed at most
once per edge. The queue operations are done at most once per vertex, and the
initialization steps also take time proportional to the size of the graph.

9.3. Shortest-Path Algorithms

In this section we examine various shortest-path problems. The input is a weighted
graph: associated with each edge (v;, v;) is a cost ¢, ; to traverse the arc. The cost of
apathvivy...vN is Z,N;ll cii+1- This is referred to as the weighted path length. The
unweighted path length is merely the number of edges on the path, namely, N — 1.

SINGLE-SOURCE SHORTEST-PATH PROBLEM:
Given as input a weighted graph, G = (V,E), and a distinguished vertex, s,
find the shortest weighted path from s to every other vertex in G.

For example, in the graph in Figure 9.8, the shortest weighted path from v; to vg has
a cost of 6 and goes from v; to v4 to v7 to vg. The shortest unweighted path between
these vertices is 2. Generally, when it is not specified whether we are referring to a
weighted or an unweighted path, the path is weighted if the graph is. Notice also
that in this graph there is no path from vg to v;.

The graph in the preceding example has no edges of negative cost. The graph in
Figure 9.9 shows the problems that negative edges can cause. The path from vs to v4
has cost 1, but a shorter path exists by following the loop vs, v4, v, vs, v4, which has
cost — 5. This path is still not the shortest, because we could stay in the loop arbitrarily
long. Thus, the shortest path between these two points is undefined. Similarly, the
shortest path from v; to v is undefined, because we can get into the same loop.
This loop is known as a negative-cost cycle; when one is present in the graph, the
shortest paths are not defined. Negative-cost edges are not necessarily bad, as the
cycles are, but their presence seems to make the problem harder. For convenience,
in the absence of a negative-cost cycle, the shortest path from s to s is zero.

Figure 9.8 A directed graph G
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Figure 9.9 A graph with a negative-cost cycle

There are many examples where we might want to solve the shortest-path
problem. If the vertices represent computers; the edges represent a link between
computers; and the costs represent communication costs (phone bill per 1,000 bytes
of data), delay costs (number of seconds required to transmit 1,000 bytes), or a
combination of these and other factors, then we can use the shortest-path algorithm
to find the cheapest way to send electronic news from one computer to a set of other
computers.

We can model airplane or other mass transit routes by graphs and use a shortest-
path algorithm to compute the best route between two points. In this and many
practical applications, we might want to find the shortest path from one vertex, s,
to only one other vertex, t. Currently there are no algorithms in which finding the
path from s to one vertex is any faster (by more than a constant factor) than finding
the path from s to all vertices.

We will examine algorithms to solve four versions of this problem. First, we
will consider the unweighted shortest-path problem and show how to solve it in
O(|E| + |V|). Next, we will show how to solve the weighted shortest-path problem
if we assume that there are no negative edges. The running time for this algorithm
is O(|E|log|V]) when implemented with reasonable data structures.

If the graph has negative edges, we will provide a simple solution, which
unfortunately has a poor time bound of O(|E| - |V]). Finally, we will solve the
weighted problem for the special case of acyclic graphs in linear time.

9.3.1. Unweighted Shortest Paths

Figure 9.10 shows an unweighted graph, G. Using some vertex, s, which is an input
parameter, we would like to find the shortest path from s to all other vertices. We
are only interested in the number of edges contained on the path, so there are no
weights on the edges. This is clearly a special case of the weighted shortest-path
problem, since we could assign all edges a weight of 1.

For now, suppose we are interested only in the length of the shortest paths, not
in the actual paths themselves. Keeping track of the actual paths will turn out to be
a matter of simple bookkeeping.
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vy Va

Ve V7

Figure 9.10 An unweighted directed graph G

Suppose we choose s to be v3. Immediately, we can tell that the shortest path
from s to v is then a path of length 0. We can mark this information, obtaining the
graph in Figure 9.11.

Now we can start looking for all vertices that are a distance 1 away from s.
These can be found by looking at the vertices that are adjacent to s. If we do this,
we see that v1 and vg are one edge from s. This is shown in Figure 9.12.

Figure 9.11 Graph after marking the start node as reachable in zero edges

Vi Va

Vg Vs

Figure 9.12 Graph after finding all vertices whose path length from s is 1
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Vi Va

Ve V7

Figure 9.13 Graph after finding all vertices whose shortest path is 2

We can now find vertices whose shortest path from s is exactly 2, by finding all
the vertices adjacent to v; and vg (the vertices at distance 1), whose shortest paths
are not already known. This search tells us that the shortest path to v, and vy is 2.
Figure 9.13 shows the progress that has been made so far.

Finally we can find, by examining vertices adjacent to the recently evaluated v,
and vy, that vs and v, have a shortest path of three edges. All vertices have now
been calculated, and so Figure 9.14 shows the final result of the algorithm,

This strategy for searching a graph is known as breadth-first search. It operates
by processing vertices in layers: the vertices closest to the start are evaluated first, and
the most distant vertices are evaluated last. This is much the same as a level-order
traversal for trees.

Given this strategy, we must translate it into code. Figure 9.15 shows the initial
configuration of the table that our algorithm will use to keep track of its progress.

For each vertex, we will keep track of three pieces of information. First, we will
keep its distance from s in the entry d,. Initially all vertices are unreachable except
for s, whose path length is 0. The entry in p, is the bookkeeping variable, which
will allow us to print the actual paths. The entry Known is set to 1 after a vertex
is processed. Initially, all entries are not Known, including the start vertex. When

Figure 9.14 Final shortest paths
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v Known d, P
U1 0 @ 0
vz 0 © 0
V3 0 0 0
Vs 0 *® 0
Us 0 @ 0
Vg 0 @ 0
vy 0 © 0

Figure 9.15 Initial configuration of table used in un-
weighted shortest-path computation

a vertex is marked known, we have a guarantee that no cheaper path will ever be
found, and so processing for that vertex is essentially.complete. '

The basic algorithm can be described in Figure 9.16. The algorithm in Figure
9.16 mimics the diagrams by declaring as Known the vertices at distance d = 0,
then d = 1, then d = 2, and so on, and setting all the adjacent vertices w that still
have d,, = «to a distanced,, = d + 1.

By tracing back through the p, variable, the actual path can be printed. We will
see how when we discuss the weighted case.

The running time of the algorithm is O(|V[?), because of the doubly nested
for loops. An obvious inefficiency is that the outside loop continues until

Figure 9.16 Pseudocode for unweighted shortest-path

algorithm
void
Unweighted( Table T ) /* Assume T 1is initialized */
{
int CurrDist;
Vertex V, W;
/¥ 1%/ for( CurrDist = 0; CurrDist < NumVertex; CurrDist++ )
/* 2%/ for each vertex V
J* 3%/ if ( !T[ V ].Known && T[ V ].Dist == CurrDist )
{
/% 4%/ T[ V ]1.Known = True;
/* 5%/ for each W adjacent to V
/* 6%/ if( T[ W ]1.Dist == Infinity )
{
/¥ 7%/ TL W ].Dist = CurrDist + 1;
/* 8%/ T[L W ].Path = V;
}
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Figure 9.17 A bad case for unweighted shortest-path
algorithm using Figure 9.16 (pseudocode)

NumVertex —1, even if all the vertices become known much earlier. Although an
extra test could be made to avoid this, it does not affect the worst-case running time,
as can be seen by generalizing what happens when the input is the graph in Figure
9.17 with start vertex vs. .

We can remove the inefficiency in much the same way as was done for
topological sort. At any point in time, there are only two types of unknown vertices
that have d, # . Some have d, = CurrDist, and the rest have d, = CurrDist + 1.
Because of this extra structure, it is very wasteful to search through the entire table
to find a proper vertex at lines 2 and 3. '

A very simple but abstract solution is to keep two boxes. Box #1 will have the
unknown vertices with d, = CurrDist, and box #2 will have d, = CurrDist + 1.
The test at lines 2 and 3 can be replaced by finding any vertex in box #1. After line 8
(inside the if block), we can add w to box #2. After the outside for loop terminates,
box #1 is empty, and box #2 can be transferred to box #1 for the next pass of the
for loop.

We can refine this idea even further by using just one queue. At the start of the
pass, the queue contains only vertices of distance CurrDist. When we add adjacent
vertices of distance CurrDist + 1, since they enqueue at the rear, we are guaranteed
that they will not be processed until after all the vertices of distance CurrDist have
been processed. After the last vertex at distance CurrDist dequeues and is processed,
the queue only contains vertices of distance CurrDist + 1, so this process perpetuates.
We merely need to begin the process by placing the start node on the queue by
itself. .

The refined algorithm is shown in Figure 9.18. In the pseudocode, we have
assumed that the start vertex, s, is known somehow and T[s].Dist is 0. A C routine
might pass s as an argument. Also, it is possible that the queue might empty
prematurely, if some vertices are unreachable from the start node. In this case, a
distance of Infinity will be reported for these nodes, which is perfectly reasonable.
Finally, the Known field is not used; once a vertex is processed it can never enter the
queue again, so the fact that it need not be reprocessed is implicitly marked. Thus,
the Known field can be discarded. Figure 9.19 shows how the values on the graph
we have been using are changed during the algorithm. We keep the Known field to
make the table easier to follow and for consistency with the rest of this section.

Using the same analysis as was performed for topological sort, we see that the
running time is O(|E| + |V|), as long as adjacency lists are used.

9.3.2. Dijkstra’s Algorithm

If the graph is weighted, the problem (apparently) becomes harder, but we can still
use the ideas from the unweighted case.
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void . .
Unweighted( Table T ) /* Assume T 1s initialized (Fig 9.30) */
{
Queue Q;
Vertex V, W;
/* 1%/ Q = CreateQueue( NumvVertex ); MakeEmpty( Q );
/* Enqueue the start vertex S, determined elsewhere */
/* 2%/ Enqueue( S, Q J;
/* 3%/ while( !IsEmpty( Q ) )
/* 4%/ ' V = Dequeue( Q );
/* 5%/ T[ V ].Known = True; /* Not really needed anymore */
/* 6%/ for each W adjacent to V
/% 7%/ if( TL W ].Dist == Infimity )
{
/* 8%/ TL W ].Dist = T[ V ].Dist + 1;
/* 9%/ TL W ].Path = V;
/*10%/ Enqueue( W, Q );
} }
/¥11*/ DisposeQueue( Q ); /* Free the memory */
}

Figure 9.18 Pseudocode for unweighted shortest-path algorithm

We keep all of the same information as before. Thus, each vertex is marked as
either known or unknown. A tentative distance d, is kept for each vertex, as before.
This distance turns out to be the shortest path length from s to v using only known
vertices as intermediates. As before, we record p,, which is the last vertex to cause a
change to d,.

The general method to solve the single-source shortest-path problem is known
as Dijkstra’s algorithm. This thirty-year-old solution is a prime example of a greedy
algorithm. Greedy algorithms generally solve a problem in stages by doing what
appears to be the best thing at each stage. For example, to make change in U.S.
currency, most people count out the quarters first, then the dimes, nickels, and
pennies. This greedy algorithm gives change using the minimum number of coins.
The main problem with greedy algorithms is that they do not always work. The
addition of a 12-cent piece breaks the coin-changing algorithm for returning 15
cents, because the answer it gives (one 12-cent piece and three pennies) is not
optimal (one dime and one nickel).

Dijkstra’s algorithm proceeds in stages, just like the unweighted shortest-path al-
gorithm. At each stage, Dijkstra’s algorithm selects a vertex v, which has the smallest
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Initial State v3 Dequeued v; Dequeued vs Dequeued
v Known d, p, | Known d, p, | Known d, p, ( Known dy po
" 0 o 0 0 1 v 1 1 v 1 1 v
i 0 o 0 0 o 0 0 2 n 0 2 0
v3 0 0 0 1 0 0 1 0 0 1 0 0
Vg 0 o 0 0 @ 0 0 2 14 0 2 [ 21
vs 0 o 0 0 o 0 0 o 0 0 o
Ve 0 o 0 0 1 v 0 1 v 1 1 v
vy 0 © 0 0 o 0 0 o 0 0 © 0
Q: v3 V1, Vg Vs, V2,4 V2, V4
v2 Dequeued v; Dequeued vs Dequened v7 Dequeuned

v Known d, p, | Known d, p, | Knowmn d, p, | Known d, p,
5] 1 1 v 1 1 v 1 1 v 1 1 v
1] 1 2 V1 1 2 1 21 1 2 V1 1 2 U1
v3 1 o 0 1 0 0 1 0 O 1 0 0
Vs 0 2 141 1 2 141 1 2 [ 41 1 2 V1
Us 0 3 0 3 un 1 3 n 1 3 un
Vs 1 1 V3 1 1 U3 1 1 v3 1 1 V3
U7 0 o0 0 0 3 Vs 0 3 V4 1 3 V4
Q: Vs, Us Us, U7 vy empty

Figure 9.19 How the data changes during the unweighted shortest-path algorithm

d, among all the unknown vertices, and declares that the shortest path from s to v
is known. The remainder of a stage consists of updating the values of d,,,.

In the unweighted case, we set d, = d, + 1 if d,, = ». Thus, we essentially
lowered the value of d,, if vertex v offered a shorter path. If we apply the same logic
to the weighted case, then we should set d,, = d, + ¢, if this new value for d,,
would be an improvement. Put simply, the algorithm decides whether or not it is a
good idea to use v on the path to w. The original cost, d,,, is the cost without using
v; the cost calculated above is the cheapest path using v (and only known vertices).

The graph in Figure 9.20 is our example. Figure 9.21 represents the initial

.configuration, assuming that the start node, s, is 1. The first vertex selected is vy,

with path length 0. This vertex is marked known. Now that v; is known, some
entries need to be adjusted. The vertices adjacent to v; are v; and v4. Both these
vertices get their entries adjusted, as indicated in Figure 9.22.

Next, v4 is selected and marked known. Vertices v3, vs, vg, and v7 are adjacent,
and it turns out that all require adjusting, as shown in Figure 9.23.

Next, v, is selected. v4 is adjacent but already known, so no work is per-
formed on it. vs is adjacent but not adjusted, because the cost of going through v, is
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v Known d, p,

141
V2
V3
V4
Us
Ve
vz

8 88 88 8o
coocoococoo

(= =B« I o e 3w N o]

Figure 9.21 Initial configuration of table used in
Dijkstra’s algorithm

v Known d, p,
v 1 0 o
vy -0 2 vy
V3 0 @ 0
Vs 0 1 vy
Vs 0 @ 0
Vs 0 ® 0
v7 0 @® 0

Figure 9.22 After v; is declared known

v Known d, p,
U 1 0 o
vy 0 2 141
U3 0 3 Vs
[ 2] 1 1 141
Us 0 3 Vs
Ve 0 92 v
vy 0 5 V4

Figure 9.23 After vy is declared known



v Koown d, P,
141 1 0 0
v2 1 2 1
U3 0 3 1 27
Vs 1 1 (4]
Vs 0 3 V4
Vg 0 9 v
vy 0 5 V4

Figure 9.24 After v, is declared known

v Known d, p,
[ 4] 1 0 0
vy 1 2 1
1 %) 1 3 V4
Vs 1 1 V1
Us 1 3 Vs
Vg 0 8 v3
vy 0 5 Vs

9.3. SHORTEST-PATH ALGORITHMS -

Figure 9.25 After vs and then v; are declared known

v Known d, p,
1 41 1 0 0
v, 1 2 uy
v 1 3 vy
Vs 1 1 1 41
Us 1 3 wun
Vg 0 6 vy
vy 1 5 U4

Figure 9.26 After v is declared known

2 + 10 = 12 and a path of length 3 is already known. Figure 9.24 shows the table

after these vertices are selected.

The next vertex selected is vs at cost 3. v7 is the only adjacent vertex, but it
is not adjusted, because 3 + 6 > 5. Then v; is selected, and the distance for vg is
adjusted down to 3 + § = 8. The resulting table is depicted in Figure 9.25,

Next v7 is selected; v¢ gets updated down to 5 + 1 = 6. The resulting table is

Figure 9.26.

Finally, v is selected. The final table is shown in Figure 9.27. Figure 9.28
graphically shows how edges are marked known and vertices updated during
Dijkstra’s algorithm. '
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v Known 4, P,
" 1 0 O
1 2] 1 2 n
v3 1 3 v
Vs 1 1 u
Vs 1 3 Vs
Ve 1 6 U7
v7 1 5 V4

Figure 9.27 After vs is declared known and algorithm terminates

Figure 9.28 Stages of Dijkstra’s algorithm
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To print out the actual path from a start vertex to some vertex v, we can write
a recursive routine to follow the trail left in the p array.

We now give pseudocode to implement Dijkstra’s algorithm. We will assume
that the vertices are numbered from 0 to NumVertex — 1 for convenience (see Fig.
9.29) and that the graph can be read into an adjacency list by the routine ReadGraph.

In the routine in Figure 9.30, the start vertex is passed to the initialization
routine. This is the only place in the code where the start vertex needs to be known.

The path can be printed out using the recursive routine in Figure 9.31. The
routine recursively prints the path all the way up to the vertex before v on the path,
and then just prints v. This works because the path is simple.

Figure 9.29 Declarations for Dijkstra’s algorithm

typedef int Vertex;

struct TableEntry

{
List Header; /* Adjacency list */
int Known;
DistType Dist;
Vertex Path;
b

/* Vertices are numbered from 0 */
#define NotAVertex (-1)
typedef struct TableEntry Table[ NumVertex ];

Figure 9.30 Table initialization routine

void
InitTable( Vertex Start, Graph G, Table T )
{
int i;
/* 1%/ _ ReadGraph( G, T ); /* Read graph somehow */
/* 2%/ for( i = 0; i < NumVertex; i++ )
{
/* 3%/ T[ i J.Known = False:
/* 4%/ TL i ].Dist = Infinity;
/* 5%/ T[ i J.Path = NotAVertex;
}
/* 6%/ T[ Start ].dist = 0;
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/* Print shortest path to V after Dijkstra has run */
/* Assume that the path exists */

void
PrintPath( Vertex V, Table T )

if( T[ V ].Path != NotAVertex )

{
PrintPath( T[ V ].Path, T );
printf( " to" );

}
printf( "%v", V ); /* %v is pseudocode */
}

Figure 9.31 Routine to print the actual shortest path

Figure 9.32 shows the main algorithm, which is just a for loop to fill up the
table using the greedy selection rule.

A proof by contradiction will show that this algorithm always works as long
as no edge has a negative cost. If any edge has negative cost, the algorithm could
produce the wrong answer (see Exercise 9.7a). The running time depends on how
the table is manipulated, which we have yet to consider. If we use the obvious
algorithm of scanning down the table to find the minimum d,, each phase will take
O(|V]) time to find the minimum, and thus O(|V|?) time will be spent finding the
minimum over the course of the algorithm. The time for updating d,, is constant per
update, and there is at most one update per edge for a total of O(|E|). Thus, the total
running time is O(|[E| + |[V[2) = O(|V[?). If the graph is dense, with |E| = 9(|V|?),
this algorithm is not only simple but essentially optimal, since it runs in time linear
in the number of edges.

If the graph is sparse, with |E| = @(|V|), this algorithm is too slow. In this case,
the distances would need to be kept in a priority queue. There are actually two ways
to do this; both are similar.

Lines 2 and 5 combine to form a DeleteMin operation, since once the unknown
minimum vertex is found, it is no longer unknown and must be removed from future
consideration. The update at line 9 can be implemented two ways.

One way treats the update as a DecreaseKey operation. The time to find the
minimum is then O(log|V|), as is the time to perform updates, which amount to
DecreaseKey operations. This gives a running time of O(|E|log|V| + |V|log|V|) =
O(|E|log|V]), an improvement over the previous bound for sparse graphs. Since
priority queues do not efficiently support the Find operation, the location in the
priority queue of each value of d; will need to be maintained and updated whenever
d; changes in the priority queue. If the priority queue is implemented by a binary
heap, this will be messy. If a pairing heap (Chapter 12) is used, the code is not
too bad.

An alternate method is to insert w and the new value d,, into the priority queue
every time line 9 is executed. Thus, there may be more than one representative
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void
Dijkstra( Table T )
{
Vertex V, W;
/* 1*/ for( ; ;)
{
/% 2%/ V = smallest unknown distance vertex;
J* 3%/ if( V == NotAVertex )
/¥ 4%/ break;
/* 5%/ TL V ].Known = True;
/* 6%/ for each W adjacent to V
/* 7%/ ifC !T[ W J.Known )
/* 8%/ ifC TL V J.Dist + Cvw < T[ W ].Dist )
{ /* Update W */
/* 9%/ Decrease( T[ W ].Dist to
TL V 1.Dist + Cvw );
/*10*/ T[ W ].Path = V;
}
}
}

Figure 9.32 Pseudocode for Dijkstra’s algoritm

for each vertex in the priority queue. When the DeleteMin operation removes the
smallest vertex from the priority queue, it must be checked to make sure that it is
not already known. Thus, line 2 becomes a loop performing DeleteMins until an
unknown vertex emerges. Although this method is superior from a software point
of view, and is certainly much easier to code, the size of the priority queue could get
to be as large as |E|. This does not affect the asymptotic time bounds, since [E| <
|[V|? implies that log|E| = 2log|V|. Thus, we still get an O(|E|log|V|) algorithm.
However, the space requirement does increase, and this could be important in some
applications. Moreover, because this method requires |E| DeleteMins instead of only
|V, it is likely to be slower in practice.

Notice that for the typical problems, such as computer mail and mass transit
commutes, the graphs are typically very sparse because most vertices have only a
couple of edges, so it is important in many applications to use a priority queue to
solve this problem. -

There are better time bounds possible using Dijkstra’s algorithm if different data
structures are used. In Chapter 11, we will see another priority queue data structure
called the Fibonacci heap. When this is used, the running time is O(|E| + |V|log|V|).
Fibonacci heaps have good theoretical time bounds but a fair amount of overhead,
so it is not clear whether using Fibonacci heaps is actually better in practice than
Dijkstra’s algorithm with binary heaps. Needless to say, there are no average-case
results for this problem, since it is not even obvious how to model a random graph.
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void /* Assume T is initialized as in Fig 9.18 */
WeightedNegative( Table T )
{
Queue Q;

“Vertex V, W;

/* 1*/ Q = CreateQueue( NumVertex ); MakeEmpty( Q );

/* 2%/ Enqueue( S, Q ); /* Enqueue the start vertex S */
/* 3%/ while( !'IsEmpty( Q ) )
{
/* 4*/ V = Dequeue( Q );
/* 5*/ for each W adjacent to V
/* 6%/ ifFC TL V ].Dist + Cvw < T[ W ].Dist )
{

/* Update W */

/* 7%/ T[ W ].Dist = T[ V ].Dist + Cvw;
/* 8%/ TL W ].Path = V;
/¥ 9%/ if( W is not already in Q)
/*10%*/ Enqueue( W, Q );
, } }
/*11*/ DisposeQueue( Q );
}

Figure 9.33 Pseudocode for weighted shortest-path
algorithm with negative edge costs

9.3.3. Graphs with Negative Edge Costs

If the graph has negative edge costs, then Dijkstra’s algorithm does not work. The
problem is that once a vertex # is declared known, it is possible that from some
other, unknown vertex v there is a path back to # that is very negative. In such a
case, taking a path from s to v back to # is better than going from s to # without
using v. Exercise 9.7(a) asks you to construct an explicit example.

A tempting solution is to add a constant A to each edge cost, thus removing
negative edges, calculate a shortest path on the new graph, and then use that result
on the original. The naive implementation of this strategy does not work because
paths with many edges become more weighty than paths with few edges.

A combination of the weighted and unweighted algorithms will solve the
problem, but at the cost of a drastic increase in running time. We forget about the
concept of known vertices, since our algorithm needs to be able to change its mind.
We begin by placing s on a queue. Then, at each stage, we dequeue a vertex v. We
find all vertices w adjacent to v such that d,, > d, + ¢,,,. We update d,, and p,,
and place w on a queue if it is not already there. A bit can be set for each vertex
to indicate presence in the queue. We repeat the process until the queue is empty.
Figure 9.33 (almost) implements this algorithm.
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Although the algorithm works if there are no negative-cost cycles, it is no longer
true that the code in lines 6 through 10 is executed once per edge. Each vertex
can dequeue at most |V| times, so the running time is O(|E| - |V|) if adjacency lists
are used (Exercise 9.7(b)). This is quite an increase from Dijkstra’s algorithm, so
it is fortunate that, in practice, edge costs are nonnegative. If negative-cost cycles
are present, then the algorithm as written will loop indefinitely. By stopping the
algorithm after any vertex has dequeued |V|+ 1 times, we can guarantee termination.

9.3.4. Acyclic Graphs

If the graph is known to be acyclic, we can improve Dijkstra’s algorithm by
changing the order in which vertices are declared known, otherwise known as the
vertex selection rule. The new rule is to select vertices in topological order. The
algorithm can be done in one pass, since the selections and updates can take place
as the topological sort is being performed.

This selection rule works because when a vertex v is selected, its distance, d,,
can no longer be lowered, since by the topological ordering rule it has no incoming
edges emanating from unknown nodes. ‘

There is no need for a priority queue with this selection rule; the running time
is O(|E| + | V), since the selection takes constant time.

An acyclic graph could model some downhill skiing problem—we want to get
from point a to b, but can only go downbhill, so clearly there are no cycles. Another
possible application might be the modeling of (nonreversible) chemical reactions.
We could have each vertex represent a particular state of an experiment. Edges
would represent a transition from one state to another, and the edge weights might
represent the energy released. If only transitions from a higher energy state to a
lower are allowed, the graph is acyclic.

A more important use of acyclic graphs is critical path analysis. The graph in
Figure 9.34 will serve as our example. Each node represents an activity that must be
performed, along with the time it takes to complete the activity. This graph is thus
known as an activity-node graph. The edges represent precedence relationships: An
edge (v, w) means that activity v must be completed before activity w may begin. Of

Figure 9.34 Activity-node graph

= T ()

307



308

CHAPTER 9/GRAPH ALGORITHMS

course, this implies that the graph must be acyclic. We assume that any activities
that do not depend (either directly or indirectly) on each other can be performed in
parallel by different servers. ' '

This type of a graph could be (and frequently is) used to model construction
projects. In this case, there are several important questions which would be of
interest to answer. First, what is the earliest completion time for the project? We
can see from the graph that 10 time units are required along the path A, C,F,H.
Another important question is to determine which activities can be delayed, and by
how long, without affecting the minimum completion time. For instance, delaying
any of A, C, F, or H would push the completion time past 10 units. On the other
hand, activity B is less critical and can be delayed up to two time units without
affecting the final completion time.

To perform these calculations, we convert the activity-node graph to an event-
node graph. Each event corresponds to the completion of an activity and all its
dependent activities. Events reachable from a node v in the event-node graph may
not commence until after the event v is completed. This graph can be constructed
automatically or by hand. Dummy edges and nodes may need to be inserted in the
case where an activity depends on several others. This is necessary in order to avoid
introducing false dependencies (or false lack of dependencies). The event-node graph
corresponding to the graph in Figure 9.34 is shown in Figure 9.35.

To find the earliest completion time of the project, we merely need to find the
length of the Jongest path from the first event to the last event. For general graphs,
the longest-path problem generally does not make sense, because of the possibility of
positive-cost cycles. These are the equivalent of negative-cost cycles in shortest-path
problems. If positive-cost cycles are present, we could ask for the longest simple
path, but no satisfactory solution is known for this problem. Since the event-node
graph is acyclic, we need not worry about cycles. In this case, it is easy to adapt the
shortest-path algorithm to compute the earliest completion time for all nodes in the
graph. If EC; is the earliest completion time for node #, then the applicable rules are

EC; =0

EC, = max (EC, + ¢,)
(v,w)EE
Figure 9.36 shows the earliest completion time for each event in our example
event-node graph.
We can also compute the latest time, LC;, that each event can finish without
affecting the final completion time. The formulas to do this are

LC, = EC,

LC, = min (LCy, —cyu)
(v,w)EE

These values can be computed in linear time by maintaining, for each vertex, a list
of all adjacent and preceding vertices. The earliest completion times are computed
for vertices by their topological order, and the latest completion times are computed
by reverse topological order. The latest completion times are shown in Figure 9.37.

The slack time for each edge in the event-node graph represents the amount
of time that the completion of the corresponding activity can be delayed without



9.3. SHORTEST-PATH ALGORITHMS

Flgure 9.36 Earliest completion times

delaying the overall completion. It is easy to see that
Slack(,,,.,,) = LC,,, - EC,, = Cyw

Figure 9.38 shows the slack (as the third entry) for each activity in the event-node
graph. For each node, the top number is the earliest completion time and the bottom
entry is the latest completion time.

Figure 9.37 Latest completion times
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Some activities have zero slack. These are critical activities, which must finish
on schedule. There is at least one path consisting entirely of zero-slack edges; such a
path is a critical path.

9.3.5. All-Pairs Shortest Path

Sometimes it is important to find the shortest paths between all pairs of vertices in
the graph. Although we could just run the appropriate single-source algorithm [V|
times, we might expect a somewhat faster solution, especially on a dense graph, if
we compute all the information at once.

In Chapter 10, we will see an O(|V]?) algorithm to solve this problem for
weighted graphs. Although, for dense graphs, this is the same bound as running a
simple (non-priority queue) Dijkstra’s algorithm |V| times, the loops are so tight
that the specialized all-pairs algorithm is likely to be faster in practice. On sparse
graphs, of course, it is faster to run |V| Dijkstra’s algorithms coded with priority
queues.

9.4. Network Flow Problems

Suppose we are given a directed graph G = (V, E) with edge capacities c,,,. These
capacities could represent the amount of water that could flow through a pipe or
the amount of traffic that could flow on a street between two intersections. We have
two vertices: s, which we call the source, and ¢, which is the sink. Through any edge,
(v, w), at most c,,,, units of “flow” may pass. At any vertex, v, that is not either s
or ¢, the total flow coming in must equal the total flow going out. The maximum
flow problem is to determine the maximum amount of flow that can pass from s to
t. As an example, for the graph in Figure 9.39 on the left the maximum flow is 5, as
indicated by the graph on the right.

Figure 9.39 A graph (left) and its maximum flow
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9.4. NETWORK FLOW PROBLEMS

As required by the problem statement, no edge carries more flow than its
capacity. Vertex a has three units of flow coming in, which it distributes to ¢ and d.
Vertex d takes three units of flow from 2 and b and combines this, sending the result
to . A vertex can combine and distribute flow in any manner that it likes, as long
as edge capacities are not violated and as long as flow conservation is maintained
(what goes in must come out).

9.4.1. A Simple Maximum-Flow Algorithm

A first attempt to solve the problem proceeds in stages. We start with our graph,
G, and construct a flow graph Gy. Gy tells the flow that has been attained at any
stage in the algorithm. Initially all edges in Gy have no flow, and we hope that when
the algorithm terminates, G, contains a maximum flow. We also construct a graph,
G,, called the residual graph. G, tells, for each edge, how much more flow can be
added. We can calculate this by subtracting the current flow from the capacity for
each edge. An edge in G, is known as a residual edge.

At each stage, we find a path in G, from s to #. This path is known as an
augmenting path. The minimum edge on this path is the amount of flow that can
be added to every edge on the path. We do this by adjusting Gy and recomputing
G,. When we find no path from s to ¢ in G,, we terminate. This algorithm is
nondeterministic, in that we are free to choose any path from s to t; obviously some
choices are better than others, and we will address this issue later. We will run this
algorithm on our example. The graphs below are G, Gy, G,, respectively. Keep in
mind that there is a slight flaw in this algorithm. The initial configuration is in Figure
9.40. ’

There are many paths from s to ¢ in the residual graph. Suppose we select s,
b, d, t. Then we can send two units of flow through every edge on this path. We
will adopt the convention that once we have filled (saturated) an edge, it is removed
from the residual graph. We then obtain Figure 9.41.

Next, we might select the path s, 4, c, ¢, which also allows two units of flow.
Making the required adjustments gives the graphs in Figure 9.42.

Figure 9.40 Initial stages of the graph, flow graph, and residual graph
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Figure 9.41 G, G/, G, after two units of flow added along s, b, d, ¢

Figure 9.42 G, Gy, G, after two units of flow added along 5,4, ¢, ¢

The only path left to select is s,a,d,t, which allows one unit of flow. The
resulting graphs are shown in Figure 9.43.

The algorithm terminates at this point, because ¢ is unreachable from s. The
resulting flow of § happens to be the maximum. To see what the problem is, suppose
that with our initial graph, we chose the path s, 4, d, t. This path allows three units
of flow and thus seems to be a good choice. The result of this choice, however, is
that there is now no longer any path from s to ¢ in the residual graph, and thus,
our algorithm has failed to find an optimal solution. This is an example of a greedy
algorithm that does not work. Figure 9.44 shows why the algorithm fails.

" In order to make this algorithm work, we need to allow the algorithm to change
its mind. To do this, for every edge (v, w) with flow f,,, in the flow graph, we will
add an edge in the residual graph (w, v) of capacity f,,,,. In effect, we are allowing
the algorithm to undo its decisions by sending flow back in the opposite direction.
This is best seen by example. Starting from our original graph and selecting the
augmenting path s, g, d, ¢, we obtain the graphs in Figure 9.45.

Notice that in the residual graph, there are edges in both directions between a
and d. Either one more unit of flow can be pushed from a to d, or up to three units
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Figure 9.43 G, Gy, G, after one unit of flow added along s, 4, d, t—algorithm ter-
minates

Figure 3.44 G, Gy, G, if initia} action is to add three units of flow along s, a,d,t—
algorithm terminates with suboptimal solution -
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Figure 9.45 Graphs after three units of flow added along s, 4, d, ¢ using correct
algorithm
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can be pushed back—we can undo flow. Now the algorithm finds the augmenting
paths, b,d, a, c, t, of flow 2. By pushing two units of flow from d to 4, the algorithm
takes two units of flow away from the edge (a,d) and is essentially changing its
mind. Figure 9.46 shows the new graphs.

There is no augmenting path in this graph, so the algorithm terminates.
Surprisingly, it can be shown that if the edge capacities are rational numbers, this
algorithm always terminates with a maximum flow. This proof is somewhat difficult
and is beyond the scope of this text. Although the example happened to be acyclic,
this is not a requirement for the algorithm to work. We have used acyclic graphs
merely to keep things simple,

If the capacities are all integers and the maximum flow is f, then, since each
augmenting path increases the flow value by at least 1, f stages suffice, and the total
running time is O(f - |E|), since an augmenting path can be found in O(|E|) time
by an unweighted shortest-path algorithm. The classic example of why this is a bad
running time is shown by the graph in Figure 9.47.

Figure 9.46 Graphs after two units of flow added along s, b, d, a, ¢, t using correct
algorithm
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Figure 9.47 The classic bad case for augmenting
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The maximum flow is seen by inspection to be 2,000,000 by sending 1,000,000
down each side. Random augmentations could continually augment along a path
that includes the edge connected by a and b. If this were to occur repeatedly,
2,000,000 augmentations would be required, when we could get by with only 2.

A simple method to get around this problem is always to choose the augmenting
path that allows the largest increase in flow. Finding such a path is similar to solving a
weighted shortest-path problem and a single-line modification to Dijkstra’s algorithm
will do the trick. If capmax is the maximum edge capacity, then one can show that
O(|E| log cap,,,,) augmentations will suffice to find the maximum flow. In this case,
since O(|E|log|V|) time is used for each calculation of an augmenting path, a total
bound of O(|E[? log|V|log cap,y,,) is obtained. If the capacities are all small integers,
this reduces to O(|E[? log|V]).

Another way to choose augmenting paths is always to take the path with the
least number of edges, with the plausible expectation that by choosing a path in
this manner, it is less likely that a small, flow-restricting edge will turn up on the
path. Using this rule, it can be shown that O(|E| - |V|) augmenting steps are required.
Each step takes O(|E|), again using an unweighted shortest-path algorithm, yielding
a O(|E]*|V]) bound on the running time.

Further data structure improvements are possible to this algorithm, and
there are several, more complicated, algorithms. A long history of improved
bounds has lowered the current best-known bound for this problem. Although
no O(|E||V|) algorithm has been reported yet, algorithms with O(|E||V|log(|V|*/|E|))
and O(|E||V| + |V|***) bounds have been-discovered (see the references). There are
also a host of very good bounds for special cases. For instance, O(|E||V|"2) time
finds a maximum flow ini a graph, having the property that all vertices except the
source and sink have either a single incoming edge of capacity 1 or a single outgoing
edge of capacity 1. These graphs occur in many applications.

The analyses required to produce these bounds are rather intricate, and it is not
clear how the worst-case results relate to the running times encountered in practice.
A related, even more difficult problem is the min-cost flow problem. Each edge has
not only a capacity but a cost per unit of flow. The problem is to find, among all
maximum flows, the one flow of minimum cost. Both of these problems are being
actively researched.

9.5. Minimum Spanning Tree

The next problem we will consider is that of finding a minimum spanning tree in an
undirected graph. The problem makes sense for directed graphs but appears to be
more difficult. Informally, a minimum spanning tree of an undirected graph G is a
tree formed from graph edges that connects all the vertices of G at lowest total cost.
A minimum spanning tree exists if and only if G is connected. Although a robust
algorithm should report the case that G is unconnected, we will assume that G is
connected and leave the issue of robustness as an exercise to the reader.

In Figure 9.48 the second graph is a minimum spanning tree of the first (it
happens to be unique, but this is unusual). Notice that the number of edges in the
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@

Figure 9.48 A graph G and its minimum spanning tree

Lad?

minimum spanning tree is |V| — 1. The minimum spanning tree is a tree because
it is acyclic, it is spanning because it covers every vertex, and it is minimum for
the obvious reason. If we need to wire a house with a minimum of cable, then a
minimum spanning tree problem needs to be solved.

For any spanning tree T, if an edge e that is not in T is added, a cycle is created.
The removal of any edge on the cycle reinstates the spanning tree property. The cost
of the spanning tree is lowered if e has lower cost than the edge that was removed.
If, as a spanning tree is created, the edge that is added is the one of minimum cost
that avoids creation of a cycle, then the cost of the resulting spanning tree cannot
be improved, because any replacement edge would have cost at least as much as an
edge already in the spanning tree. This shows that greed works for the minimum
spanning tree problem. The two algorithms we present differ in how a minimum
edge is selected.

9.5.1. Prim’s Algoritbm

One way to compute a minimum spanning tree is to grow the tree in successive
stages. In each stage, one node is picked as the root, and we add an edge, and thus
an associated vertex, to the tree.

At any point in the algorithm, we can see that we have a set of vertices that have
already been included in the tree; the rest of the vertices have not. The algorithm
then finds, at each stage, a new vertex to add to the tree by choosing the edge (1, v)
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Figure 9.49 Prim’s algorithm after each stage

such that the cost of (#, v) is the smallest among all edges where # is in the tree and
v is not. Figure 9.49 shows how this algorithm would build the minimum spanning
tree, starting from v;. Initially, v, is in the tree as a root with no edges. Each step
adds one edge and one vertex to the tree. .

We can see that Prim’s algorithm is essentially identical to Dijkstra’s algorithm
for shortest paths. As before, for each vertex we keep values d, and p, and an
indication of whether it is known or unknown. d, is the weight of the shortest arc
connecting v to a known vertex, and p,, as before, is the last vertex to cause a change
in d,. The rest of the algorithm is exactly the same, with the exception that since the
definition of d,, is different, so is the update rule. For this problem, the update rule is
even simpler than before: After a vertex v is selected, for each unknown w adjacent
tov, d, = min(d,, cy,y).

The initial configuration of the table is shown in Figure 9.50. v is selectedy and
v, v3, and v4 are updated. The table resulting from this is shown in Figure 9.51.
The next vertex selected is v4. Every vertex is adjacent to v4. v; is not examined,
because it is known. v, is unchanged, because it has d, = 2 and the edge cost from
v4 to vy is 3; all the rest are updated. Figure 9.52 shows the resulting table. The next
vertex chosen is v, (arbitrarily breaking a tie). This does not affect any distances.
Then v; is chosen, which affects the distance in vg, producing Figure 9.53. Figure
9.54 results from the selection of v7, which forces vg and vs to be adjusted. vg and
then v;s are selected, completing the algorithm.

The final table is shown in Figure 9.55. The edges in the spanning tree can be
read from the table: (v, v1), (v3, v4), (v4, 1), (vs, v7)s (U6, v7), (7, V4). The total cost
is 16.

The entire implementation of this algorithm is virtually_identical to that of
Dijkstra’s algorithm, and everything that was said about the analysis of Dijkstra’s
algorithm applies here. Be aware that Prim’s algorithm runs on undirected graphs,
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v Known d, p,
151 0 0 0
1) 0 o 0
V3 0 @ 0
V4 0 @ 0
Vs 0 @ 0
Vg 0 @ 0
vy 0 @ 0

Figure 9.50 Initial configuration of table used in Prim’s

algorithm
v Known d, p,
1 41 1 0 0
(%] 0 2 U1
vy 0 4 141
2 0 1 v1
Us 0 ] 0
Vg 0 - 0
v7 0 oo 0

Figure 9.51 The table after v; is declared known

v Known d, p,
v 1 0 o
%] 0 2 141
U_3 0 2 Vs
[ 23 1 1 [4]
Us 0 7 vy
Vg 0 8 V4
vy 0 4 177

Figure 9.52 The table.after v4 is declared known

so when coding it, remember to put every edge in two adjacency lists. The running
time is O(|V]*) without heaps, which is optimal for dense graphs, and O(|E|log|V|)
using binary heaps, which is good for sparse graphs.

9.5.2. Kruskal’s Algorithm

A second greedy strategy is continually to select the edges in order of smallest weight
and accept an edge if it does not cause a cycle. The action of the algorithm on the
graph in the preceding example is shown in Figure 9.56.
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v Known d, P,
" 1 0 0
2 1 2 1 41
V3 1 2
Y4 1 1 1
Vs 0 7 1 77
Ve 0 5 V3
vy 0 4 v,

Figure 9.53 The table after v, and then v3 are declared known

v Known 4, p,
v 1 0 O
1 ] 1 2 (41
[ %] 1 2 V4
V4 1 1 »n
Vs 0 6 vy
Vg 0 1 v7
1 24 1 4 1 7]

Figure 9.54 The table after v7 is declared known

v Known d, 'p,
U1 1 0 0
U2 1 2 141
vy 1 2 v
Vs 1 1 151
Vs 1 6 vz
Vg 1 1 v7
v7 1 4 v

Figure 9.55 The table after v and vs are selected
(Prim’s algorithm terminates)

Formally, Kruskal’s algorithm maintains a forest—a collection of trees. Initially,
there are |V| single-node trees. Adding an edge merges two trees into one. When the
algorithm terminates, there is only one tree, and this is the minimum spanning tree.
Figure 9.57 shows the order in which edges are added to the forest.

The algorithm terminates when enough edges are accepted. It turns out to be
simple to decide whether edge (%, v) should be accepted or rejected. The appropriate
data structure is the Union/Find algorithm of the prevxous chapter.

The invariant we will use is that at any point in the process, two vertices belong
to the same set if and only if they are connected in the current spanning forest.
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Edge Weight Action
(v1,va) 1 Accepted
(vesv7) 1 Accepted
(vi,v2) 2 Accepted
(v3,va) 2 Accepted
(v2, vs) 3 Rejected
(v1,v3) 4 Rejected
(v4s v7) 4 Accepted
(v3, vg) 5 Rejected
(vs, v7) 6 Accepted

Figure 9.56 Action of Kruskal’s algorithm on G

@ ® OO, OO,
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@ @ :
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Figure 9.57 Kruskal’s algorithm after each stage’

Thus, each vertex is initially in its own set. If # and v are in the same set, the edge
is rejected, because since they are already connected, adding (u,v) would form a
cycle. Otherwise, the edge is accepted, and a Union is performed on the two sets
containing # and v. It is easy to see that this maintains the set invariant, because
once the edge (#, v) is added to the spanning forest, if 1 was connected to # and x
was connected to v, then x and w must now be connected, and thus belong in the
same set.

The edges could be sorted to facilitate the selection, but building a heap in
linear time is a much better idea. Then DeleteMins give the edges to be tested in
order. Typically, only a small fraction of the edges need to be tested before the
algorithm can terminate, although it is always possible that all the edges must be
tried. For instance, if there was an extra vertex vg and edge (vs,vs) of cost 100,
all the edges would have to be examined. Procedure Kruskal in Figure 9.58 finds a
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void
Kruskal( Graph G )
{
int EdgesAccepted;
DisjSet S;
PriorityQueue H;
Vertex U, V;
SetType Uset, Vset;
Edge E;
/¥ 1%/ Initialize( S );
/% 2%/ ReadGraphIntoHeapArray( G, H );
/* 3*/ BuildHeap( H );
AR LY EdgesAccepted = 0;
/* 5%/ while( EdgesAccepted < NumVertex - 1 )
/* 6%/ E = DeleteMin( H); /* E = (U,V) */
/* 7%/ Uset = Find(C U, S );
/* 8%/ Vset = Find( V, S );
/* 9%/ if( Uset != Vset )
/* Accept the edge */
/*10%/ EdgesAccepted++;
/*11*/ SetUnion( S, USet, VSet );
}
}
}

Figure 9.58 Pseudocode for Kruskal’s algorithm

minimum spanning tree. Because an edge consists of three pieces of data, on some
machines it is more efficient to implement the priority queue as an array of pointers
to edges, rather than as an array of edges. The effect of this implementation is that,
to rearrange the heap, only pointers, not large records, need to be moved.

The worst-case running time of this algorithm is O(|E|log |E|), which is domi-
nated by the heap operations. Notice that since |E| = O(|V[?), this running time is
actually O(|E|log|V|). In practice, the algorithm is much faster than this time bound
would indicate.

9.6. Applications of Depth-First Search

Depth-first search is a generalization of preorder traversal. Starting at some vertex,
v, we process v and then recursively traverse all vertices adjacent to v. If this process
is performed on a tree, then all tree vertices are systematically visited in a total of
O(|E|) time, since |E| = @(|V]). If we perform this process on an arbitrary graph,
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void
Dfs( Vertex V)

Visited{ V ] = True;
for each W adjacent to V
if( Visited[ W 1 )
Dfs( W );
} .

Figure 9.59 Template for depth-first search

we need to be careful to avoid cycles. To do this, when we visit a vertex v, we
mark it visited, since now we have been there, and recursively call depth-first search .
on all adjacent vertices that are not already marked. We implicitly assume that for
undirected graphs every edge (v, w) appears twice in the adjacency lists: once as
(v, w) and once as (w, v). The procedure in Figure 9.59 performs a depth-first search
(and does absolutely nothing else) and is a template for the general style.

The (global) boolean array Visited(] is initialized to false. By recursively calling
the procedures only on nodes that have not been visited, we guarantee that we do
not loop indefinitely. If the graph is undirected and not connected, or directed and
not strongly connected, this strategy might fail to visit some nodes. We then search
for an unmarked node, apply a depth-first traversal there, and continue this process
until there are no unmarked nodes.” Because this strategy guarantees that each edge
is encountered only once, the total time to perform the traversal is O(|E| + |V]), as
long as adjacency lists are used.

9.6.1. Undirected Graphs

An undirected graph is connected if and only if a depth-first search starting from
any node visits every node. Because this test is so easy to apply, we will assume
that the graphs we deal with are connected. If they are not, then we can find all the
connected components and apply our algorithm on each of these in turn.

As an example of depth-first search, suppose in the graph of Figure 9.60 we start
at vertex A. Then we mark A as visited and call Dfs(B) recursively. Dfs(B) marks B
as visited and calls Dfs(C) recursively. Dfs(C) marks C as visited and calls Dfs(D)
recursively. Dfs(D) sees both A and B, but both of these are marked, so no recursive
calls are made. Dfs(D) also sees that C is adjacent but marked, so no recursive
call is made there, and Dfs(D) returns back to Dfs(C). Dfs(C) sees B adjacent,
ignores it, finds a previously unseen vertex E adjacent, and thus calls Dfs(E}. Dfs(E)
marks E, ignores A and C, and returns to Dfs(C). Dfs(C) returns to Dfs(B). Dfs(B)
ignores both A and D and returns. Dfs(A) ignores both D and E and returns. (We have

*An efficient way of implementing this is to begin the depth-first search at v,. If we need to restart the
depth-first search, we examine the sequence vy, U441, ... for an unmarked vertex, where v, is the vertex
where the last depth-first search was started. This guarantees that throughout the algorithm, only O(|V|)
is spent looking for vertices where new depth-first search trees can be started.
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Figure 9.60 An undirected graph

actually touched every edge twice, once as (v,w) and again as (w,v), but this is
really once per adjacency list entry.)

We graphically illustrate these steps with a depth-first spanning tree. The root
of the tree is A, the first vertex visited. Each edge (v, w) in the graph is present in the
tree. If, when we process (v, w), we find that w is unmarked, or if, when we process
(w,v), we find that v is unmarked, we indicate this with a tree edge. If, when we
process (v, w), we find that w is already marked, and when processing (w, v), we
find that v is already marked, we draw a dashed line, which we will call a back edge,
to indicate that this “edge” is not really part of the tree. The depth-first search of
the graph in Figure 9.60 is shown in Figure 9.61.

Figure 9.61 Depth-first search of previous graph
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The tree will simulate the traversal we performed. A preorder numbering of the
tree, using only tree edges, tells us the order in which the vertices were marked. If
the graph is not connected, then processing all nodes (and edges) requires several
calls to Dfs, and each generates a tree. This entire collection is a depth-first spanning
forest.

9.6.2. Biconnectivity

A connected undirected graph is biconnected if there are no vertices whose removal
disconnects the rest of the graph. The graph in the example above is biconnected. I
the nodes are computers and the edges are links, then if any computer goes down,
network mail is unaffected, except, of course, at the down computer. Similarly, if
a mass transit system is biconnected, users always have an alternate route should
some terminal be disrupted.

If a graph is not biconnected, the vertices whose removal would disconnect the
graph are known as articulation points. These nodes are critical in many applications.
The graph in Figure 9.62 is not biconnected: C and D are articulation points. The
removal of C would disconnect G, and the removal of D would disconnect E and F,
from the rest of the graph.

Depth-first search provides a linear-time algorithm to find all articulation points
in a connected graph. First, starting at any vertex, we perform a depth-first search
and number the nodes as they are visited. For each vertex v, we call this preorder
number Num(v). Then, for every vertex v in the depth-first search spanning tree, we
compute the lowest-numbered vertex, which we call Low(v), that is reachable from
v by taking zero or more tree edges and then possibly one back edge (in that order).
The depth-first search tree in Figure 9.63 shows the preorder number first, and then
the lowest-numbered vertex reachable under the rule described above.

The lowest-numbered vertex reachable by A, B, and C is vertex 1 (A), because
they can all take tree edges to D and then one back edge back to A. We can efficiently
compute Low by performing a postorder traversal of the depth-first spanning tree.
By the definition of Low, Low(v) is the minimum of

1. Num(v)
2. the lowest Num(w) among all back edges (v, w)
3. the lowest Low(w) among all tree edges (v, w)

The first condition is the option of taking no edges, the second way is to choose
no tree edges and a back edge, and the third way is to choose some tree edges and
possibly a back edge. This third method is succinctly described with a recursive
call. Since we need to evaluate Low for all the children of v before we can evaluate
Low(v), this is a postorder traversal. For any edge (v, w), we can tell whether it is a
tree edge or a back edge merely by checking Num(v) and Num(w). Thus, it is easy
to compute Low/(v): we merely scan down ¢’s adjacency list, apply the proper rule,
and keep track of the minimum. Doing all the computation takes O(|E| + |V|) time.

All that is left to do is to use this information to find articulation points. The
root is an articulation point if and only if it has more than one child, because if it has
two children, removing the root disconnects nodes in different subtrees, and if it has
only one child, removing the root merely disconnects the root. Any other vertex v is
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Figure 9.62 A graph with articulation points C and D

Figure 9.63 Depth-first tree for previous graph, with Num and Low
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an articulation point if and only if v has some child w such that Low(w) = Num(v).
Notice that this condition is always satisfied at the root; hence the need for a special
test.

The if part of the proof is clear when we examine the articulation points that the
algorithm determines, namely, C and D. D has a child E, and Low(E) = Num(D),
since both are 4. Thus, there is only one way for E to get to any node above
D, and that is by going through D. Similarly, C is an articulation point, because
Low(G) = Num(C). To prove that this algorithm is correct, one must show that
the only if part of the assertion is true (that is, this finds all articulation points). We
leave this as an exercise. As a second example, we show (Fig. 9.64) the result of
applying this algorithm on the same graph, starting the depth-first search at C.

We close by giving pseudocode to implement this algorithm. We will assume
that the arrays Visited(] (initialized to false), Num[], Low(], and Parent|] are global
to keep the code simple. We will also keep a global variable called Counter, which is
initialized to 1 to assign the preorder traversal numbers, Num([]. This is not normally
good programming practice, but including all the declarations and passing the extra
parameters would cloud the logic. We also leave out the easily implemented test for
the root.

As we have already stated, this algorithm can be implemented by performing a
preorder traversal to compute Num and then a postorder traversal to compute Low.
A third traversal can be used to check which vertices satisfy the articulation point
criteria. Performing three traversals, however, would be a waste. The first pass is
shown in Figure 9.65.

The second and third passes, which are postorder traversals, can be implemented
by the code in Figure 9.66. Line 8 handles a special case. If w is adjacent to v, then
the recursive call to w will find v adjacent to w. This is not a back edge, only an edge
that has already been considered and needs to be ignored. Otherwise, the procedure
computes the minimum of the various Low[] and Num[) entries, as specified by the
algorithm. '

There is no rule that a traversal must be either preorder or postorder. It is
possible to do processing both before and after the recursive calls. The procedure in

Figure 9.64 Depth-first tree that results if depth-first search starts at C
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/*
/*
/*
/*
/'k

1*/
2%/
3%/
4*/

5*/
6%/

/* Assign Num and compute Parents */

void

AssignNum( Vertex V )

}

Vertex W;

Num[ V ] = Counter++;
Visited[ V ] = True;
for each W adjacent to V
if( WVisited[ W ] )
{
Parent[ W] = V;
AssignNum( W );

Figure 9.65 Routine to assign Num to vertices

(pseudocode)

/*
/*

/*
/*
/*
/*
/*

/*
/'k

1%/
2%/

3=/

4*/
5%/
6*/
7%/

8*/
9%/

/* Assign Low; also check for articulation points */

void
AssignLow( Vertex V )

}

Vertex W;

Low[ V] =Num[ V ]; /* Rule 1 */
for each W adjacent to V

{
ifC Num[ W] > Num[ V ] ) /* Forward edge */
{
AssignLow( W );
ifC Low[ W ] >= Num[ V ] )
printf( "%v is an articulation point\n", v );
Low[ V1 =MinCLow{ V], Low[ W] ); /* Rule 3 */
) !
else
if( Parent[ V] !'= W ) /* Back edge */
Low[ V] = Min(C Low[ V 1, Num[- W ] ); /* Rule 2 ¥/
}

Figure 9.66 Pseudocode to compute Low and to test

for articulation points (test for the root is
omitted)
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Figure 9.67 combines the two routines AssignNum and AssignLow in a straightfor-
ward manner to produce the procedure FindArt.

9.6.3. Euler Circuits

Consider the three figures in Figure 9.68. A popular puzzle is to reconstruct these
figures using a pen, drawing each line exactly once. The pen may not be lifted from
the paper while the drawing is being performed. As an extra challenge, make the
pen finish at the same point at which it started. This puzzle has a surprisingly simple
solution. Stop reading if you would like to try to solve it.

The first figure can be drawn only if the starting point is the lower left- or
right-hand corner, and it is not possible to finish at the starting point. The second
figure is easily drawn with the finishing point the same as the starting point, but the
third figure cannot be drawn at all within the parameters of the puzzle.

We can convert this problem to a graph theory problem by assigning a vertex
to each intersection. Then the edges can be assigned in the natural manner, as in
Figure 9.69.

After this conversion is performed, we must find a path in the graph that visits
every edge exactly once. If we are to solve the “extra challenge,” then we must
find a cycle that visits every edge exactly once. This graph problem was solved in
1736 by Euler and marked the beginning of graph theory. The problem is thus
commonly referred to as an Euler path (sometimes Euler tour) or Euler circuit
problem, depending on the specific problem statement. The Euler tour and Euler
circuit problems, though slightly different, have the same basic solution. Thus, we
will consider the Euler circuit problem in this section.

The first observation that can be made is that an Euler circuit, which must end
on its starting vertex, is possible only if the graph is connected and each vertex has
an even degree (number of edges). This is because, on the Euler circuit, a vertex is
entered and then left. If any vertex v has odd degree, then eventually we will reach
the point where only one edge into v is unvisited, and taking it will strand us at
v. If exactly two vertices have odd degree, an Euler tour, which must visit every
edge but need not return to its starting vertex, is still possible if we start at one of
the odd-degree vertices and finish at the other. If more than two vertices have odd
degree, then an Euler tour is not possible.

The observations of the preceding paragraph provide us with a necessary
condition for the existence of an Euler circuit. It does not, however, tell us that all
connected graphs that satisfy this property must have an Euler circuit, nor does it
give us guidance on how to find one. It turns out that the necessary condition is also
sufficient. That is, any connected graph, all of whose vertices have even degree, must
have an Euler circuit. Furthermore, a circuit can be found in linear time.

We can assume that we know that an Euler circuit exists, since we can test
the necessary and sufficient condition in linear time. Then the basic algorithm is to
perform a depth-first search. There are a surprisingly large number of “obvious”
solutions that do not work. Some of these are presented in the exercises.

The main problem is that we might visit a portion of the graph and return to
the starting point prematurely. If all the edges coming out of the start vertex have
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/*
/*
/*

/*

/*
/*
/*
/*
/*

1%/
2%/
3%/

4%/

5%/
6*/
7*/
8*/
9%/

/*10%/
/*11*/

void
FindArt( Vertex V )
{

Vertex W;
Visited[ V ] = True;

Low[ V] = Num[ V ] = Counter++; - /* Rule 1 */
for each W adjacent to V

if( !'Visited[ W] ) /* Forward edge */

{

Parent[ W] =V;

FindArt( W );

ifC Low[ W] >= Num[ V ] )

printf( "%v is an articulation point\n", v );

Ltow[ VI =Min(C Lowf V], Low[ W] ); /* Rule 3 */
}
else

if( Parent[ V] != W) /* Back edge */
Low[ V] = MinC Low[ V], Num[ W ] ); /* Rule 2 */

}

Figure 9.67 Testing for articulation points in one

depth-first search (test for the root is
omitted) (pseudocode)

Figure 9.68 Three drawings

===

Figure 9.69 Conversion of puzzle to graph
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been used up, then part of the graph is untraversed. The easiest way to fix this
is to find the first vertex on this path that has an untraversed edge, and perform
another depth-first search. This will give another circuit, which can be spliced into
the original. This is continued until all edges have been traversed.

As an example, consider the graph in Figure 9.70. It is easily seen that this
graph has an Euler circuit. Suppose we start at vertex 5, and traverse the circuit 5,
4,10, 5. Then we are stuck, and most of the graph is still untraversed. The situation
is shown in Figure 9.71.

We then continue from vertex 4, which still has unexplored edges. A depth-first
search might come up with the path 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4. If we splice this
path into the previous path of 5, 4, 10, S, then we get a new pathof 5,4, 1, 3, 7, 4,
11,10, 7,9, 3, 4, 10, 5. ,

The graph that remains after this is shown in Figure 9.72. Notice that in this
graph all the vertices must have even degree, so we are guaranteed to find a cycle to

Figure 9.70 Graph for Euler circuit problem

Figure 9.72 Graph after the path 5,4, 1, 3,7,4,11,10,7,9, 3,4, 10, 5
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add. The remaining graph might not be connected, but this is not important. The
next vertex on the path that has untraversed edges is vertex 3. A possible circuit
would then be 3, 2, 8, 9, 6, 3. When spliced in, this gives the path 5,4, 1, 3,2, 8, 9,
6,3,7,4,11,10,7,9, 3,4, 10, 5.

The graph that remains is in Figure 9.73. On this path, the next vertex with an
untraversed edge is 9, and the algorithm finds the circuit 9, 12, 10, 9. When this is
added to the current path, a circuit of §, 4, 1, 3, 2, 8,9, 12, 10, 9, 6, 3, 7, 4, 11, 10,
7,9, 3,4, 10, 5 is obtained. As all the edges are traversed, the algorithm terminates
with an Euler circuit. ‘

To make this algorithm efficient, we must use appropriate data structures. We
will sketch some of the ideas, leaving the implementation as an exercise. To make
splicing simple, the path should be maintained as a linked list. To avoid repetitious
scanning of adjacency lists, we must maintain, for each adjacency list, a pointer to
the last edge scanned. When a path is spliced in, the search for a new vertex from
which to perform the next depth-first search must begin at the start of the splice
point. This guarantees that the total work performed on the vertex search phase is
O(|E]) during the entire life of the algorithm. With the appropriate data structures,
the running time of the algorithm is O(|E| + |V]).

A very similar problem is to find a simple cycle, in an undirected graph, that
visits every vertex. This is known as the Hamiltonian cycle problem. Although it
seems almost identical to the Euler circuit problem, no efficient algorithm for it is
known. We shall see this problem again in Section 9.7.

9.6.4. Directed Graphs

Using the same strategy as with undirected graphs, directed graphs can be traversed
in linear time, using depth-first search. If the graph is not strongly connected, a
depth-first search starting at some node might not visit all nodes. In this case we
repeatedly perform depth-first searches, starting at some unmarked node, until all
vertices have been visited. As an example, consider the directed graph in Figure 9.74.

We arbitrarily start the depth-first search at vertex B. This visits vertices B, C,
A, D, E, and F. We then restart at some unvisited vertex. Arbitrarily, we start at H,
which visits I and J. Finally, we start at G, which is the last vertex that needs to be
visited. The corresponding depth-first search tree is shown in Figure 9.75.

Figure 9.73 Graph remaining after the path 5, 4, 1, 3, 2,
8,9,6,3,7,4,11,10,7,9, 3, 4, 10, 5
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E

Figure 9.74 A directed graph

Figure 9.75 Depth-first search of previous graph

The dashed arrows in the depth-first spanning forest are edges (v, w) for which
w was already marked at the time of consideration. In undirected graphs, these are
always back edges, but, as we can see, there are three types of edges that do not lead
to new vertices. First, there are back edges, such as (A, B) and (I, H). There are also
forward edges, such as (C, D) and (C, E), that lead from a tree node to a descendant.
Finally, there are cross edges, such as (F, C) and (G, F), which connect two tree
nodes that are not directly related. Depth-first search forests are generally drawn
with children and new trees added to the forest from left to right. In a depth-first

search of a directed graph drawn in this manner, cross edges always go from right
to left.
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Some algorithms that use depth-first search need to distinguish between the
three types of nontree edges. This is easy to check as the depth-first search is being
performed, and it is left as an exercise.

One use of depth-first search is to test whether or not a directed graph is acyclic.
The rule is that a directed graph is acyclic if and only if it has no back edges. (The
graph above has back edges, and thus is not acyclic.) The reader may remember that
a topological sort can also be used to determine whether a graph is acyclic. Another
way to perform topological sorting is to assign the vertices topological numbers
N,N —1,...,1 by postorder traversal of the depth-first spanning forest. As long as
the graph is acyclic, this ordering will be consistent.

9.6.5. Finding Strong Components

By performing two depth-first searches, we can test whether a directed graph is
strongly connected, and if it is not, we can actually produce the subsets of vertices
that are strongly connected to themselves. This can also be done in only one
depth-first search, but the method used here is much simpler to understand.

First, a depth-first search is performed on the input graph G. The vertices of G
are numbered by a postorder traversal of the depth-first spanning forest, and then

all edges in G are reversed, forming G,. The graph in Figure 9.76 represents G, for

the graph G shown in Figure 9.74; the vertices are shown with their numbers.

The algorithm is completed by performing a depth-first search on G,, always
starting a new depth-first search at the highest-numbered vertex. Thus, we begin the
depth-first search of G, at vertex G, which is numbered 10. This leads nowhere,
so the next search is started at H. This call visits I and J. The next call starts at B
and visits A, C, and F. The next calls after this are Dfs(D) and finally Dfs(E). The
resulting depth-first spanning forest is shown in Figure 9.77.

Each of the trees (this is easier to see if you completely ignore all nontree edges)
in this depth-first spanning forest forms a strongly connected component, Thus, for
our example, the strongly connected components are {G}, {H, I, J}, {B, A, C, F},
{D}, and {E}.

To see why this algorithm works, first note that if two vertices v and w are in
the same strongly connected component, then there are paths from v to w and from
w to v in the original graph G, and hence also in G,. Now, if two vertices v and
w are not in the same depth-first spanning tree of G,, clearly they cannot be in the
same strongly connected component.

To prove that this algorithm works, we must show that if two vertices v and
w are in the same depth-first spanning tree of G,, there must be paths from v to w
and from w to v. Equivalently, we can show that if x is the root of the depth-first
spanning tree of G, containing v, then there is a path from x to v and from v to x.
Applying the same logic to w would then give a path from x to w and from w to x.
These paths would imply paths from v to w and w to v (going through x).

Since v is a descendant of x in G,’s depth-first spanning tree, there is a path
from x to v in G, and thus a path from v to x in G. Furthermore, since x is the
root, x has the higher postorder number from the first depth-first search. Therefore,
during the first depth-first search, all the work processing v was completed before
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Figure 9.76 G, numbered by postorder traversal of G (from Fig. 9.74)

Figure 9.77 Depth-first search of G,;strong components are {G}, {H, I, J},
{B, A, C, F}, {D}, {E}

the work at x was completed. Since there is a path from v to x, it follows that v must
be a descendant of x in the spanning tree for G—otherwise v would finish after x.
This implies a path from x to v in G and completes the proof.

9.7. Introduction to NP-Completeness

In this chapter, we have seen solutions to a wide variety of graph theory problems.
All these problems have polynomial running times, and with the exception of the
network flow problem, the running time is either linear or only slightly more than
linear (O(|E|log|E|)). We have also mentioned, in passing, that for some problems
certain variations seem harder than the original.

manNA
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Recall that the Euler circuit problem, which finds a path that touches every
edge exactly once, is solvable in linear time. The Hamiltonian cycle problem aslfs
for a simple cycle that contains every vertex. No linear algorithm is known for this
problem.

The single-source unweighted shortest-path problem for directed graphs is also
solvable in linear time. No linear-time algorithm is known for the corresponding
longest-simple-path problem. :

The situation for these problem variations is actually much worse than we have
described. Not only are no linear algorithms known for these variations, but there
are no known algorithms that are guaranteed to run in polynomial time. The best
known algorithms for these problems could take exponential time on some inputs.

In this section we will take a brief look at this problem. This topic is rather
complex, so we will only take a quick and informal look at it. Because of this, the
discussion may be (necessarily) somewhat imprecise in places.

We will see that there are a host of important problems that are roughly
equivalent in complexity. These problems form a class called the NP-complete
problems. The exact complexity of these NP-complete problems has yet to be
determined and remains the foremost open problem in theoretical computer science.
Either all these problems have polynomial-time solutions or none of them do.

9.7.1. Easy vs. Hard

When classifying problems, the first step is to examine the boundaries. We have
already seen that many problems can be solved in linear time. We have also seen
some Of(log N) running times, but these either assume some preprocessing (such
as input already being read or a data structure already being built) or occur on
arithmetic examples. For instance, the Gcd algorithm, when applied on two numbers
M and N, takes O(log N) time. Since the numbers consist of log M and log N bits
respectively, the Ged algorithm is really taking time that is linear in the amount or
size of input. Thus, when we measure running time, we will be concerned with the
running time as a function of the amount of input. Generally, we cannot expect
better than linear running time.

At the other end of the spectrum lie some truly hard problems. These problems
are so hard that they are impossible. This does not mean the typical exasperated
moan, which means that it would take a genius to solve the problem. Just as
real numbers are not sufficient to express a solution to x* < 0, one can prove
that computers cannot solve every problem that happens to come along. These
“impossible” problems are called undecidable problems.

‘One particular undecidable problem is the halting problem. Is it possible to
have your C compiler have an extra feature that not only detects syntax errors but
also all infinite loops? This seems like a hard problem, but one might expect that
if some very clever programmers spent enough time on it, they could produce this
enhancement.

The intuitive reason that this problem is undecidable is that such a program
might have a hard time checking itself. For this reason, these problems are sometimes
called recursively undecidable.
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If an infinite loop—checking program could be written, surely it could be used to
check itself. We could then produce a program called LOOP. LOOP takes as input
a program P and runs P on itself. It prints out the phrase YES if P loops when run
on itself. If P terminates when run on itself, a natural thing to do would be to print
out NO. Instead of doing that, we will have LOOP go into an infinite loop.

What happens when LOOP is given itself as input? Either LOOP halts, or it
does not halt. The problem is that both these possibilities lead to contradictions, in
much the same way as does the phrase “This sentence is a lie.”

By our definition, LOOP(P) goes into an infinite loop if P(P) terminates.
Suppose that when P = LOOP, P(P) terminates. Then, according to the LOOP
program, LOOP(P) is obligated to go into an infinite loop. Thus, we must have
LOOP(LOOP) terminating and entering an infinite loop, which is clearly not
possible. On the other hand, suppose that when P = LOOP, P(P) enters an infinite
loop. Then LOOP(P) must terminate, and we arrive at the same set of contradictions.
Thus, we see that the program LOOP cannot possibly exist.

9.7.2. . The Class NP

A few steps down from the horrors of undecidable problems lies the class NP. NP
stands for nondeterministic polynomial-time. A deterministic machine, at each point
in time, is executing an instruction. Depending on the instruction, it then goes to
some next instruction, which is unique. A nondeterministic machine has a choice of
next steps. It is free to choose any that it wishes, and if one of these steps leads to
a solution, it will always choose the correct one. A nondeterministic machine thus
has the power of extremely good (optimal) guessing. This probably seems like a
ridiculous model, since nobody could possibly build a nondeterministic computer,
and because it would seem to be an incredible upgrade to your standard computer
(every problem might now seem trivial). We will see that nondeterminism is a very
useful theoretical construct. Furthermore, nondeterminism is not as powerful as
one might think. For instance, undecidable problems are still undecidable, even if
nondeterminism is allowed. .

A simple way to check if a problem is in NP is to phrase the problem as a
yes/no question. The problem is in NP if, in polynomial time, we can prove that any
“yes” instance is correct. We do not have to worry about “no” instances, since the
program always makes the right choice. Thus, for the Hamiltonian cycle problem, a
“yes” instance would be any simple circuit in the graph that includes all the vertices.
This is in NP, since, given the path, it is a simple matter to check that it is really a
Hamiltonian cycle. Appropriately phrased questions, such as “Is there a simple path
of length > K?” can also easily be checked and are in NP. Any path that satisfies
this property can be checked trivially.

The class NP includes all problems that have polynomial-time solutions, since
obviously the solution provides a check. One would expect that since it is so much
easier to check an answer than to come up with one from scratch, there would be
problems in NP that do not have polynomial-time solutions. To date no such prob-
lem has been found, so it is entirely possible, though not considered likely by experts,
that nondeterminism is not such an important improvement. The problem is that
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proving exponential lower bounds is an extremely difficult task. The information
theory bound technique, which we used to show that sorting requires (N log N)
comparisons, does not seem to be adequate for the task, because the decision trees
are not nearly large enough.

Notice also that not all decidable problems are in NP. Consider the problem .

of determining whether a graph does 7ot have a Hamiltonian cycle. To prove that a
graph has a Hamiltonian cycle is a relatively simple matter—we just need to exhibit
one. Nobody knows how to show, in polynomial time, that a graph does not have a
Hamiltonian cycle. It seems that one must enumerate all the cycles and check them
one by one. Thus the Non-Hamiltonian cycle problem is not known to be in NP.

9.7.3. NP-Complete Problems

Among all the problems known to be in NP, there is a subset, known as the
NP-complete problems, which contains the hardest. An NP-complete problem has
the property that any problem in NP can be polynomially reduced to it.

A problem P; can be reduced to P; as follows: Provide a mapping so that
any instance of P; can be transformed to an instance of P;. Solve P;, and then
map the answer back to the original. As an example, numbers are entered into a
pocket calculator in decimal. The decimal numbers are converted to binary, and
all calculations are performed in binary. Then the final answer is converted back
to decimal for display. For P; to be polynomially reducible to P,, all the work
associated with the transformations must be performed in polynomial time.

The reason that NP-complete problems are the hardest NP problems is that a
problem that is NP-complete can essentially be used as a subroutine for any problem
in NP, with only a polynomial amount of overhead. Thus, if any NP-complete
problem has a polynomial-time solution, then every problem in NP must have a
polynomial-time solution. This makes the NP-complete problems the hardest of all
NP problems.

Suppose we have an NP-complete problem P;. Suppose P; is known to be in
NP. Suppose further that P; polynomially reduces to P, so that we can solve P,
by using P, with only a polynomial time penalty. Since Py is NP-complete, every
problem in NP polynomially reduces to P;. By applying the closure property of
polynomials, we see that every problem in NP is polynomially reducible to P;: We
reduce the problem to P; and then reduce P; to P;. Thus, P; is NP-complete.

As an example, suppose that we already know that the Hamiltonian cycle
problem is NP-complete. The traveling salesman problem is as follows.

TRAVELING SALESMAN PROBLEM:

Given a complete graph G = (V, E), with edge costs, and an integer K, is there
a simple cycle that visits all vertices and bas total cost = K?

The problem is different from the Hamiltonian cycle problem, because all
[VI(IV] — 1)/2 edges are present and the graph is weighted. This problem has many
important applications. For instance, printed circuit boards need to have holes
punched so that chips, resistors, and other electronic components can be placed.
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This is done mechanically. Punching the hole is a quick operation; the time-
consuming step is positioning the hole puncher. The time required for positioning
depends on the distance traveled from hole to hole. Since we would like to punch
every hole (and then return to the start for the next board), and minimize the total
amount of time spent traveling, what we have is a traveling salesman problem.

The traveling salesman problem is NP-complete. It is easy to see that a solution
can be checked in polynomial time, so it is certainly in NP. To show that it is
NP-complete, we polynomially reduce the Hamiltonian cycle problem to it. To do
this we construct a new graph G'. G’ has the same vertices as G. For G, each edge
(v, w) has a weight of 1 if (v,w) € G, and 2 otherwise. We choose K = [V/|. See
Figure 9.78.

It is easy to verify that G has a Hamiltonian cycle if and only if G' has a
Traveling Salesman tour of total weight |V|.

There is now a long list of problems known to be NP-complete. To prove
that some new problem is NP-complete, it must be shown to be in NP, and then
an appropriate NP-complete problem must be transformed into it. Although the
transformation to a traveling salesman problem was rather straightforward, most
transformations are actually quite involved and require some tricky constructions.
Generally, several different NP-complete problems are considered before the problem
that actually provides the reduction. As we are only interested in the general ideas,
we will not show any more transformations; the interested reader can consult the
references.

The alert reader may be wondering how the first NP-complete problem was
actually proven to be NP-complete. Since proving that a problem is NP-complete
requires transforming it from another NP-complete problem, there must be some
NP-complete problem for which this strategy will not work, The first problem
that was proven to be NP-complete was the satisfiability problem. The satisfiability
problem takes as input a boolean expression and asks whether the expression has
an assignment to the variables that gives a value of 1.

Figure 9.78 Hamiltonian cycle problem transformed to
traveling salesman problem
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Satisfiability is certainly in NP, since it is easy to evaluate a boolean expression
and check whether the result is true. In 1971, Cook showed that satisfiability
was NP-complete by directly proving that all problems that are in NP could be
transformed to satisfiability. To do this, he used the one known fact about every
problem in NP: Every problem in NP can be solved in polynomial time by a
nondeterministic computer. The formal model for a computer is known as a Turing
machine. Cook showed how the actions of this machine could be simulated by an
extremely complicated and long, but still polynomial, boolean formula. This boolean
formula would be true if and only if the program which was being run by the Turing
machine produced a “yes” answer for its input.

Once satisfiability was shown to be NP-complete, a host of new NP-complete
problems, including some of the most classic problems, were also shown to be
NP-complete.

In addition to the satisfiability, Hamiltonian circuit, traveling salesman, and
longest-path problems, which we have already examined, some of the more well-
known NP-complete problems which we have not discussed are bin packing,
knapsack, graph coloring, and clique. The list is quite extensive and includes prob-
lems from operating systems (scheduling and security), database systems, operations
research, logic, and especially graph theory.

Summary

In this chapter we have seen how graphs can be used to model many real-life
problems. Many of the graphs that occur are typically very sparse, so it is important
to pay attention to the data structures that are used to implement them.

We have also seen a class of problems that do not seem to have efficient
solutions. In Chapter 10, some techniques for dealing with these problems will be
discussed.

Exercises

9.1 Find a topological ordering for the graph in Figure 9.79.

9.2 If a stack is used instead of a queue for the topological sort algorithm in Section
9.1, does a different ordering result? Why might one data structure give a
“better” answer?

9.3 Wirite a program to perform a topological sort on a graph.

9.4 An adjacency matrix requires O(|V|?) merely to initialize using a standard
double loop. Propose a method that stores a graph in an adjacency matrix
(so that testing for the existence of an edge is O(1)) but avoids the quadratic
running time.

9.5 a. Find the shortest path from A to all other vertices for the graph in Figure
9.80.

b. Find the shortest unweighed path from B to all other vertices for the graph
in Figure 9.80. '
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Figure 9.79

9.6 What is the worst-case running time of Dijkstra’s algorithm when implemented
with d-heaps (Section 6.5)?

9.7 a. Give an example where Dijkstra’s algorithm gives the wrong answer in the
presence of a negative edge but no negative-cost cycle.

**b. Show that the weighted shortest-path algorithm suggested in Section 9.3.3
works if there are negative-weight edges, but no negative-cost cycles, and
that the running time of this algorithm is O(|E| - |V|).

*9.8 Suppose all the edge weights in a graph are integers between 1 and |E|. How
fast can Dijkstra’s algorithm be implemented?

9.9 Write a program to solve the single-source shortest-path problem.

9.10 a. Explain how to modify Dijkstra’s algorithm to produce a count of the
number of different minimum paths from v to w.

b. Explain how to modify Dijkstra’s algorithm so that if there is more than

one minimum path from v to w, a path with the fewest number of edges is
chosen.

Figure 9.80
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EXERCISES

Find the maximum flow in the network of Figure 9.79.

Suppose that G = (V,E) is a tree, s is the root, and we add a vertex ¢ and
edges of infinite capacity from all leaves in G to £. Give a linear-time algorithm
to find a maximum flow from s to ¢.

A bipartite graph, G = (V, E), is a graph such that V can be partitioned into
two subsets V; and V3 and no edge has both its vertices in the same subset.

a. Give a linear algorithm to determine whether a graph is bipartite.

b. The bipartite matching problem is to find the largest subset E' of E such
that no vertex is included in more than one edge. A matching of four edges
(indicated by dashed edges) is shown in Figure 9.81. There is a matching
of five edges, which is maximum.

Show how the bipartite matching problem can be used to solve the following
problem: We have a set of instructors, a set of courses, and a list of courses
that each instructor is qualified to teach. If no instructor is required to teach
more than one course, and only one instructor may teach a given course, what
is the maximum number of courses that can be offered?

c. Show that the network flow problem can be used to solve the bipartite
matching problem.

d. What is the time complexity of your solution to part (b)?
Give an algorithm to find an augmenting path that permits the maximum flow.

a. Find 2 minimum spanning tree for the graph in Figure 9.82 using both
Prim’s and Kruskal’s algorithms.

b. Is this minimum spanning tree unique? Why?

Does either Prim’s or Kruskal’s algorithm work if there are negative edge
weights?

Show that a graph of V vertices can have VV~2 minimum spanning trees.
Werite a program to implement Kruskal’s algorithm.

If all of the edges in a graph have weights between 1 and |E|, how fast can the
minimum spanning tree be computed?

Figure 9.81 A bipartite graph
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Figure 9.82

9.20 Give an algorithm to find a maximum spanning tree. Is this harder than finding
a minimum spanning tree?

9.21 Find all the articulation points in the graph in Figure 9.83. Show the depth-first
spanning tree and the values of Num and Low for each vertex.

9.22 Prove that the algorithm to find articulation points works.

9.23 a. Give an algorithm to find the minimum number of edges that need to be
removed from an undirected graph so that the resulting graph is acyclic.

*b. Show that this problem is NP-complete for directed graphs.

9.24 Prove that in a depth-first spanning forest of a directed graph, all cross edges
go from right to left.

9.25 Give an algorithm to decide whether an edge (v, w) in a depth-first spanmng
forest of a directed graph is a tree, back, cross, or forward edge.

9.26 Find the strongly connected components in the graph of Figure 9.84.
9.27 Write a program to find the strongly connected components in a digraph.

Figure 9.83
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Figure 9.84

*9.28

9.29

9.30

9.31

9.32

9.34

9.35

Give an algorithm that finds the strongly connected components in only one
depth-first search. Use an algorithm similar to the biconnectivity algorithm.

The biconnected components of a graph G is a partition of the edges into sets
such that the graph formed by each set of edges is biconnected. Modify the
algorithm in Figure 9.67 to find the blconnected components mstead of the
articulation points,

Suppose we perform a breadth-first search of an: undlrected graph and buxld a
breadth-first spanning tree. Show that all edges in the tree are either tree edges
or cross edges. : e -
Give an algorithm to find in an undu'ected (connected) graph a path that goes
through every edge exactly once in each dlrectlon . Gl

a. Write a program to find an Euler c1rcu1t in a graph if one cxlsts

b. Write a program to find an Euler tourin a graph if one exnsts

An Euler circuit in a directed graph is a- cycle ln/Wthh every edge 15 V151ted
exactly once. e : o

*a. Prove that a directed graph has an Euler circuit 1f and only: ifitis strongly
connected and every vertex has equal indegree and outdegree.

*b. Give a linear-time algorithm to find an Euler circuit in a directed graph
where one exists.

a. Consider the following solution to the Euler circuit problem: Assume that
the graph is biconnected. Perform a depth-first search, taking back edges
only as a last resort. If the graph is not biconnected, apply the algorithm
recursively on the biconnected components. Does this algerithm work?

b. Suppose that when taking back edges, we take the back edge to the nearest
ancestor. Does the algorithm work?

A planar graph is a graph that can be drawn in a plane without any two edges

intersecting,.

*a. Show that neither of the graphs in Figure 9.85 is planar.

b. Show that in a planar graph, there must exist some vertex which is
connected to no more than five nodes.

**c. Show that in a planar graph, |[E| < 3|V| -
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Figure 9.85

9.36

*9.37

9.38

9.39

9.40

9.41

A multigraph is a graph in which multiple edges are allowed between pairs of
vertices. Which of the algorithms in this chapter work without modification
for multigraphs? What modifications need to be done for the others?

Let G = (V,E) be an undirected graph. Use depth-first search to design a
linear algorithm to convert each edge in G to a directed edge such that the
resulting graph is strongly connected, or determine that this is not possible.

You are given a set of N sticks, which are lying on top of each other in some
configuration. Each stick is specified by its two endpoints; each endpoint is an
ordered triple giving its x, y, and z coordinates; no stick is vertical. A stick
may be picked up only if there is no stick on top of it.

a. Explain how to write a routine that takes two sticks 2 and b and reports
whether g is above, below, or unrelated to b. (This has nothing to do with
graph theory.)

b. Give an algorithm that determines whether it is possible to pick up all the
sticks, and if so, provides a sequence of stick pickups that accomplishes
this,

The clique problem can be stated as follows: Given an undirected graph
G = (V,E) and an integer K, does G contain a complete subgraph of at least
K vertices?

The vertex cover problem can be stated as follows: Given an undirected
graph G = (V,E) and an integer K, does G contain a subset V' C V such
that |V'| = K and every edge in G has a vertex in V'? Show that the clique
problem is polynomially reducible to vertex cover.

Assume that the Hamiltonian cycle problem is NP-complete for undirected
graphs.

a. Prove that the Hamiltonian cycle problem is NP-complete for directed
graphs.

b. Prove that the unweighted simple longest-path problem is NP-complete for
directed graphs.

The baseball card collector problem is as follows: Given packets P, P, ..., Py,
each of which contains a subset of the year’s baseball cards, and an integer K,
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is it possible to collect all the baseball cards by choosing = K packets? Show
that the baseball card collector prqblem is NP-complete.
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CHAPTER 10

- Algorithm Design
Techniques

So far, we have been concerned with the efficient implementation of algorithms. We
have seen that when an algorithm is given, the actual data structures need not be
specified. It is up to the programmer to choose the appropriate data structure in
order to make the running time as small as possible.

In this chapter, we switch our attention from the implementation of algorithms
to the design of algorithms. Most of the algorithms that we have seen so far are
straightforward and simple. Chapter 9 contains some algorithms that are much
more subtle, and some require an argument (in some cases lengthy) to show that
they are indeed correct. In this chapter, we will focus on five of the common types
of algorithms used to solve problems. For many problems, it is quite likely that at
least one of these methods will work. Specifically, for each type of algorithm we will

e See the general approach.

o Look at several examples (the exercises at the end of the chapter provide many
" more examples).

e Discuss, in general terms, the time and space complexity, where appropriate.

10.1. Greedy Algorithms

The first type of algorithm we will examine is the greedy algorithm. We have
already seen three greedy algorithms in Chapter 9: Dijkstra’s, Prim’s, and Kruskal’s
algorithms. Greedy algorithms work in phases. In each phase, a decision is made that
appears to be good, without regard for future consequences. Generally, this means
that some local optimum is chosen. This “take what you can get now” strategy is
the source of the name for this class of algorithms. When the algorithm terminates,
we hope that the local optimum is equal to the global optimum. If this is the case,
then the algorithm is correct; otherwise, the algorithm has produced a suboptimal
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solution. If the absolute best answer is not required, then simple greedy algorithms
are sometimes used to generate approximate answers, rather than using the more
complicated algorithms generally required to generate an exact answer.

There are several real-life examples of greedy algorithms. The most obvious is
the coin-changing problem. To make change in U.S. currency, we repeatedly dispense
the largest denomination. Thus, to give out seventeéen dollars and sixty-one cents
in change, we give out a ten-dollar bill, a five-dollar bill, two one-dollar bills, two
quarters, one dime, and one penny. By doing this, we are guaranteed to minimize the
number of bills and coins. This algorithm does not work in all monetary systems,
but fortunately, we can prove that it does work in the American monetary system.
Indeed, it works even if two-dollar bills and fifty-cent pieces are allowed.

Traffic problems provide an example where making locally optimal choices
does not always work. For example, during certain rush hour times in Miami, it is
best to stay off the prime streets even if they look empty, because traffic will come
to a standstill a mile down the road, and you will be stuck. Even more shocking, it
is better in some cases to make a temporary detour in the direction opposite your
destination in order to avoid all traffic bottlenecks.

In the remainder of this section, we will look at several applications that use
greedy algorithms. The first application is a simple scheduling problem. Virtually all
scheduling problems are either NP-complete (or of similar difficult complexity) or are
solvable by a greedy algorithm. The second application deals with file compression
and is one of the earliest results in computer science. Finally, we will look at an
example of a greedy approximation algorithm.

10.1.1. A Simple Scheduling Problem

We are given jobs ji, /2, ..., jn, all with known running times ¢4, ¢5,..., tn, respec-
tively. We have a single processor. What is the best way to schedule these jobs in
order to minimize the average completion time? In this entire section, we will assume
nonpreemptive scheduling: Once a job is started, it must run to completion.

As an example, suppose we have the four jobs and associated running times
shown in Figure 10.1. One possible schedule is shown in Figure 10.2. Because j
finishes in 15 (time units), /> in 23, j3 in 26, and j4 in 36, the average completion
time is 25. A better schedule, which yields a mean completion time of 17.75, is
shown in Figure 10.3.

The schedule given in Figure 10.3 is arranged by shortest job first. We can show

that this will always yield an optimal schedule. Let the jobs in the schedule be j;,,
Jizs + -5 Jir- The first job finishes in time ¢;,. The second job finishes after ¢;, + ¢t;,,
and the third job finishes after ¢;, + t;, + ¢;,. From this, we see that the total cost,
C, of the schedule is

N
C=>(N-k+1), (10.1)
k=1

N N
+) D>t - > ket (10.2)
k=1

ERN2A
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Job Time
1 15
2 8
i3 3
ja 10

Figure 10.1 Jobs and times

Jh J2 J3 Ja

0 15 23 26 36
Figure 10.2 Schedule #1

J3 J2 Ja Ji

0O 13 11 21 36
Figure 10.3 Schedule #2 (optimal)

Notice that in Equation (10.2), the first sum is independent of the job ordering,
so only the second sum affects the total cost. Suppose that in an ordering there exists
some x > y such that ¢;,, <t; . Then a calculation shows that by swapping j;, and
ji,» the second sum increases, decreasing the total cost. Thus, any schedule of jobs
in which the times are not monotonically nondecreasing must be suboptimal. The
only schedules left are those in which the jobs are arranged by smallest running time
first, breaking ties arbitrarily.

This result indicates the reason the operating system scheduler generally gives
precedence to shorter jobs.

The Multiprocessor Case

We can extend this problem to the case of several processors. Again we have
jobs j1, f2, ..., jN, with associated running times £1,£,..., N, and a number P of
processors. We will assume without loss of generality that the jobs are ordered,
shortest running time first. As an example, suppose P = 3, and the jobs are as
shown in Figure 10.4.

Figure 10.5 shows an optimal arrangement to minimize mean completion time.
Jobs j1, j4, and j; are run on Processor 1. Processor 2 handles j,, js, and jg, and
Processor 3 runs the remaining jobs. The total time to completion is 165, for an
average of 1§ = 18.33.

The algorithm to solve the multiprocessor case is to start-jobs in order, cycling
through processors. It is not hard to show that no other ordering can do better,
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Job Time
f 3
iz 5
73 6
fa 10
js 11
i? 15
Js 18
jo 20

Figure 10.4 Jobs and times

Ji Ja J7
J2 Js Js
J3 Je Jo
0 3 56 13 16 20 28 34 40

Figure 10.5 An optimal solution for the multiprocessor case

although if the number of processors P evenly divides the number of jobs N, there
are many optimal orderings. This is obtained by, for each 0 < i < N/P, placing
each of the jobs jip+1 through ji;+1)p on a different processor. In our case, Figure
10.6 shows a second optimal solution.

Even if P does not divide N exactly, there can still be many optimal solutions,
even if all the job times are distinct. We leave further investigation of this as an
exercise.

Minimizing the Final Completion Time

We close this section by considering a very similar problem. Suppose we are only
concerned with when the last job finishes. In our two examples above, these
completion times are 40 and 38, respectively. Figure 10.7 shows that the minimum
final completion time is 34, and this clearly cannot be improved, because every
processor is always busy. _

Although this schedule does not have minimum mean completion time, it has
merit in that the completion time of the entire sequence is earlier. If the same user
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J1 Js Jo
J2 Ja J1
J3 je Js
0 3 56 14 15 20 30 34 38

Figure 10.6 A second optimal solution for the multiprocessor case

Ja Js Js

Je Jo

j1 Jja Ja J7

0 35 9 14 16 19 34
Figure 10.7 Minimizing the final completion time

owns all these jobs, then this is the preferable method of scheduling. Although
these problems are very similar, this new problem turns out to bé NP-complete; it
is just another way of phrasing the knapsack or bin-packing problems, which we
will encounter later in this section. Thus, minimizing the final completion time is
apparently much harder than minimizing the mean completion time.

10.1.2. Huffman Codes

In this section, we consider a second application of greedy algorithms, known as file
compression. '

The normal asci character set consists of roughly 100 “printable” characters.
In order to distinguish these characters, [log 100] = 7 bits are required. Seven bits
allow the representation of 128 characters, so the ascir character set adds some other
“nonprintable” characters. An eighth bit is added as a parity check. The important
point, however, is that if the size of the character set is C, then [log C] bits are needed
in a standard encoding.

Suppose we have 3 file that contains only the characters g, e, i, s, ¢, plus blank
spaces and newlines. Suppose further, that the file has ten a’s, fifteen e’s, twelve
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Character Code Frequency Total Bits

a 000 10 30

e 001 15 45

i 010 12 36

s 011 3 9

t 100 4 12
space 101 13 39
newline 110 1 3
Total 174

Figure 10.8 Using a standard coding scheme

i’s, three s’s, four t’s, thirteen blanks, and one newline. As the table in Figure 10.8
shows, this file requires 174 bits to represent, since there are 58 characters and each
character requires three bits.

In real life, files can be quite large. Many of the very large files are output of
some program and there is usually a big disparity between the most frequent and
least frequent characters. For instance, many large data files have an inordinately
large amount of digits, blanks, and newlines, but few g’s and x’s. We might be
interested in reducing the file size in the case where we are transmitting it over a
slow phone line. Also, since on virtually every machine disk space is precious, one
might wonder if it would be possible to provide a better code and reduce the total
number of bits required.

The answer is that this is possible, and a simple strategy achieves 25 percent
savings on typical large files and as much as 50 to 60 percent savings on many large
data files. The general strategy is to allow the code length to vary from character to
character and to ensure that the frequently occurring characters have short codes.
Notice that if all the characters occur with the same frequency, then there are not
likely to be any savings.

The binary code that represents the alphabet can be represented by the binary
tree shown in Figure 10.9.

The tree in Figure 10.9 has data only at the leaves. The representation of each
character can be found by starting at the root and recording the path, using a 0
to indicate the left branch and a 1 to indicate the right branch. For instance, s
is reached by going left, then right, and finally right. This is encaded as 011. This data

Figure 10.9 Representation of the original code in a tree
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Figure 10.10 A slightly better tree

structure is sometimes referred to as a trie. If character ¢; is at depth d; and occurs
f; times, then the cost of the code is equal to > d; f;.

A better code than the one given in Figure 10.9 can be obtained by noticing
that the newline is an only child. By placing the newline symbol one level higher at
its parent, we obtain the new tree in Figure 10.10. This new tree has cost of 173,
but is still far from optimal.

Notice that the tree in Figure 10.10 is a full tree: All nodes either are leaves or
have two children. An optimal'code will always have this property, since otherwise,
as we have already seen, nodes with only one child could move up a level.

If the characters are placed only at the leaves, any sequence of bits can
always be decoded unambiguously. For instance, suppose the encoded string is
0100111100010110001000111. 0 is not a character code, 01 is not a character
code, but 010 represents i, so the first character is i. Then 011 follows, giving an s.
Then 11 follows, which is a newline. The remainder of the code is a, space, ¢, i, e,
and newline. Thus, it does not matter if the character codes are different lengths, as
long as no character code is a prefix of another character code. Such an encoding is
known as a prefix code. Conversely, if a character is contained in a nonleaf node, it
is no longer possible to guarantee that the decoding will be unambiguous.

Putting these facts together, we see that our basic problem is to find the full
binary tree of minimum total cost (as defined above), where all characters are
contained in the leaves. The tree in Figure 10.11 shows the optimal tree for our
sample alphabet. As can be seen in Figure 10.12, this code uses only 146 bits.

l’lgure' 10.11 Optimal prefix code
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Character Code Frequency - Total Bits

a 001 10 30

e 01 15 30

i 10 12 24

s 00000 3 15

t 0001 4 16
space 1 13 26
newline 00001 1 S
Total 146

Figure 10.12 Optimal prefix code

Notice that there are many optimal codes. These can be obtained by swapping
children in the encoding tree. The main unresolved question, then, is how the coding
tree is constructed. The algorithm to do this was given by Huffman in 1952 Thus,
this coding system is commonly referred to as a Huffman code.

Huffman’s Algorithm

Throughout this section we will assume that the number of characters is C. Huffman’s
algorithm can be described as follows: We maintain a forest of trees. The weight of
a tree is equal to the sum of the frequencies of its leaves. C — 1 times, select the two
trees, T} and T;, of smallest weight, breaking ties arbitrarily, and form a new tree
with subtrees T) and T5. At the beginning of the algorithm, there are C single-node
trees—one for each character. At the end of the algorithm there is one tree, and this
is the optimal Huffman coding tree.

A worked example will make the operation of the algorlthm clear. Figure 10.13
shows the initial forest; the weight of each tree is shown in small type at the root.
The two trees of lowest weight are merged together, creating the forest shown in
Figure 10.14. We will name the new root T'1, so that future merges can be stated
unambiguously. We have made s the left child arbitrarily; any tiebreaking proce-
dure can be used. The total weight of the new tree is just the sum of the weights of the

Figure 10.13 Initial stage of Huffman’s algorithm
@IO @15 G)iz @3 ®4 3 @1
Figure 10.14 Huffman’s algorithm after the first merge
4
10 15 12 4 13
® & O O OO
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T T @

Figure 10.15 Huffman’s algorithm after the second merge

© O @
Figure 10.16 Huffman’s algorithm after the third merge

old trees, and can thus be easily computed. It is also a simple matter to create the
new tree, since we merely need to get a new node, set the left and right pointers, and
record the weight.

Now there are six trees, and we again select the two trees of smallest weight.
These happen to be T1 and ¢, which are then merged into a new tree with root
T2 and weight 8. This is shown in Figure 10.15. The third step merges T2 and
a, creating T3, with weight 10 + 8 = 18. Figure 10.16 shows the result of this
operation.

After the third merge is completed, the two trees of lowest weight are the
single-node trees representing 7 and the blank space. Figure 10.17 shows how these
trees are merged into the new tree with root T4. The fifth step is to merge the trees
with roots e and T 3, since these trees have the two smallest weights. The result ‘of
this step is shown in Figure 10.18,

Finally, the optimal tree, which was shown in Figure 10.11, is obtained by
merging the two remaining trees. Figure 10.19 shows this optimal tree, with
root T6. ' '

Figure 10.17 Huffman’s algorithm after the fourth merge
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Figure 10.19 Huffman’s algorithm after the final merge

We will sketch the ideas involved in proving that Huffman’s algorithm yields
an optimal code; we will leave the details as an exercise. First, it is not hard to show
by contradiction that the tree must be full, since we have already seen how a tree
that is not full is improved.

- Next, we must show that the two least frequent characters a and B must be
the two deepest nodes (although other nodes may be as deep). Again, this is easy to
show by contradiction, since if either a or B8 is not a deepest node, then there must
be some vy that is (recall that the tree is full). If « is less frequent than v, then we
can improve the cost by swapping them in the tree.

We can then argue that the characters in any two nodes at the same depth
can be swapped without affecting optimality. This shows that an optimal tree can
always be found that contains the two least frequent symbols as siblings; thus the
first step is not a mistake.

The proof can be completed by using an induction argument. As trees are
merged, we consider the new character set to be the characters in the roots. Thus, in
our example, after four merges, we can view the character set as consisting of e and
the metacharacters T 3 and T4. This is probably the trickiest part of the proof; you
are urged to fill in all of the details.
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The reason that this is a greedy algorithm is that at each stage we perform a
merge without regard to global considerations. We merely select the two smallest
trees.

If we maintain the trees in a priority queue, ordered by weight, then the running
time is O(C log C), since there will be one BuildHeap, 2C — 2 DeleteMins, and
C — 2 Inserts, on a priority queue that never has more than C elements. A simple
implementation of the priority queue, using a linked list, would give an O(C2)
algorithm. The choice of priority queue implementation depends on how large Cis. In
the typical case of an Ascn character set, C is small enough that the quadratic running
time is acceptable. In such an application, virtually all the running time will be spent
on the disk I/O required to read the input file and write out the compressed version.

There are two details that must be considered. First, the encoding information
must be transmitted at the start of the compressed file, since otherwise it will be
impossible to decode. There are several ways of doing this; see Exercise 10.4. For
small files, the cost of transmitting this table will override any possible savings in
compression, and the result will probably be file expansion. Of course, this can
be detected and the original left intact. For large files, the size of the table is not
significant.

~ The second problem is that as described, this is a two-pass algorithm. The
first pass collects the frequency data and the second pass does the encoding. This
is obviously not a desirable property for a program dealing with large files. Some
alternatives are described in the references. '

10.1.3. Approximate Bin Packing

In this section, we will consider some algorithms to solve the bin packing problem.
These algorithms will run quickly but will not necessarily produce optimal solutions.
We will prove, however, that the solutions that are produced are not too far from
optimal. ;

We are given N items of sizes s1,5;,...,sn. All sizes satisfy 0 <s; < 1. The
problem is to pack these items in the fewest number of bins, given that each bin has
unit capacity. As an example, Figure 10.20 shows an optimal packing for an item
list with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.

Figure 10.20 Optimal packing for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

0.3
0.5
0.8
0.1
0.7
04
0.2
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There are two versions of the bin packing problem. The first version is on-line
bin packing. In this version, each item must be placed in a bin before the next item
can be processed. The second version is the off-line bin packing problem. In an
off-line algorithm, we do not need to do anything until all the input has been read.
The distinction between on-line and off-line algorithms was discussed in Section 8.2.

On-line Algorithms

The first issue to consider is whether or not an on-lme algorithm can actually always
give an optimal answer, even if it is allowed unlimited computation. Remember that
even though unlimited computation is allowed, an on-line algorithm must place an
item before processing the next item and cannot change its decision.

To show that an on-line algorithm cannot always give an optimal solution,
we will give it particularly dnfﬁcult data to -work on. Consider an input sequence
I of M small items of wejght 1 — € followed by M largc items of weight § + €,
0 < € < 0.01. It is clear that these items can be packed in M bins if we place one
small item and one large item in each bin. Suppose there were an optimal on-line
algorithm A that could perform this packing. Consider the operatlon of algorithm
A on the sequence I, consisting of only M small i items of weight  — €. I; can be
packed in [M/2] bins. However, A will place each item in a separate bin, since A
must yield the same results on I as it does for the first half of I, and the first half
of I is exactly the same input as I,. This means that A will use twice as many bins
as is optimal for I;. What we have proven is that there is no optlmal algorithm for
on-line bin packing.

. What the argument above shows is that an on-line algorithm never knows when
the input might end, so any performance guarantees it provides must hold at every
instant throughout the algorithm. If we follow the foregoing strategy, we can prove
the following.

THEOREM 10.1.

There are inputs that force any on-line bm-packmg algorithm to use at least %
the optimal number of bins.

PROOF:
Suppose otherwise, and suppose for simplicity that M is even. Consider any
on-line algorithm A running on the input sequence I;, above. Recall that this
sequence consists of M small items followed by M large items. Let us consider
" what the algorithm A has done after processing the Mth item. Suppose A has
already used b bins. At this point in the algorithm, the optimal number of bins
is M/2, because we can place two elements in each bin. Thus we know that
2b/M < %, by our assumption of a better-than-$ performance guarantee.

Now con51der the performance of algorithm A after all item$ have been
packed. All bins created after the bth bin must contain exactly one item, since
all small items are placed in the first b bins, and two large items will not fit in a
bin. Since the first b bins can have at most two items each, and the remaining
bins have one item each, we see that packing 2M items will require at least
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Figure 10.21 Next fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

2M - b bins. Since the 2M items can be optimally packed using M bins, our
performance guarantee assures us that (2M — b)/M <4

The first mequallry implies that b/M < %, and the second inequality
implies that b/M > 2 %, which is a contradiction. Thus, no on-line algorithm can
guarantee that it will produce a packing with less than the optimal number
of bins.

There are three simple algorithms that guarantee that the number of bins used is
no more than twice optimal. There are also quite a few more complicated algorithms
with better guarantees.

Next Fit

Probably the simplest algorithm is next fit. When processing any item, we check
to see whether it fits in the same bin as the last item. If it does, it is placed there;
otherwise, a new bin is created. This algorithm is incredibly simple to implement
and runs in linear time. Figure 10.21 shows the packing produced for the same input
as Figure 10.20.

Not only is next fit simple to program, its worst-case behavior is also easy to
analyze.

THEOREM 10.2.
Let M be the optimal number of bins required to pack a hst I of items. Then

next fit never uses more than 2M bins. There exist sequences such that next fit
uses 2M — 2 bins.

PROOF:
Consider any adjacent bins B; and B;1. The sum of the sizes of all items in B;
and Bj+1 must be larger than 1, since otherwise all of these items would have
been placed in B;. If we apply this result to all pairs of adjacent bins, we see
that at most half of the space is wasted. Thus next fit uses at most twice the
number of bins.

To see that this bound is tight, suppose that the N items have size s; = 0.5
if i is odd and s5; = 2/N if i is even. Assume N is divisible by 4. The optimal
packing, shown in Figure 10.22, consists of N/4 bins, each containing 2 elements
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Figure 10.22 Optimal packing for 0.5, 2/N, 0.5, 2/N, 0.5, 2/N, ...
empty empty empty
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Figure 10.23 Next fit packing for 0.5, 2/N, 0.5, 2/N, 0.5, 2/N, ...

of size 0.5, and one bin containing the N/2 elements of size 2/N, for a total of
(N/4) + 1. Figure 10.23 shows that next fit uses N/2 bins. Thus, next fit an be
" forced to use almost twice as many bins as optimal.

First Fit

Although next fit has a reasonable performance guarantee, it performs poorly in
practice, because it creates new bins when it does not need to. In the sample run, it
could have placed the item of size 0.3 in either By or B, rather than create a new
bin. ‘

The first fit strategy is to scan the bins in order and place the new item in
the first bin that is large enough to hold it. Thus, a new bin is created only when the
results of previous placements have left no other alternative. Figure 10.24 shows the
packing that results from first fit on our standard input. v

A simple method of implementing first fit would process each item by scanning
down the list of bins sequentially. This would take O(N?2). It is possible to implement
first fit to run in O(N log N'J; we leave this as an exércise.

A moment’s thought will convince you that at any point, at most one bin can be
more than half empty, since if a second bin were also half empty, its contents would
fit into the first bin. Thus, we can immediately conclude that first fit guarantees a
solution with at most twice the optimal number of bins.
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Figure 10.24 First fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

On the other hand, the bad case that we used in the proof of next fit’s
performance bound does not apply for first fit. Thus, one might wonder if a better
bound can be proven. The answer is yes, but the proof is complicated.

THEOREM 10.3.

Let M be the optimal number of bins required to pack a list I of items. Then
first fit never uses more than [ 15 M bins. There exist sequences such that first fit

uses (M — 1) bins.

PROOE:

See the references at the end of the chapter.

An example where first fit does almost as poorly as the previous theorem would
indicate is shown in Figure 10.25. The input consists of 6M items of size J + ¢,
followed by 6M items of size { + ¢, followed by 6M items of size 1 + €. One simple
packing places one item of each size in a bin and requires 6 M bins. First fit requires

10M bins.

When first fit is run on a large number of items with sizes uniformly distributed
between 0 and 1, empirical results show that first fit uses roughly 2 percent more

bins than optimal. In many cases, this is quite acceptable.

Figure 10.25 A case where first fit uses 10M bins instead of 6M
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Figure 10.26 Best fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Best Fit

The third on-line strategy we will examine is best fit. Instead of placing a new item
in the first spot that is found, it is placed in the tightest spot among all bins. A typical
packing is shown in Figure 10.26.

Notice that the item of size 0.3 is placed in Bj, where it fits perfectly, instead of
B>. One might expect that since we are now making a more educated choice of bins,
the performance guarantee would improve. This is not the case, because the generic
bad cases are the same. Best fit is never more than roughly 1.7 times as bad as
optimal, and there are inputs for which it (nearly) achieves this bound. Nevertheless,
best fit is also simple to code, especially if an O(N log N) algorithm is required, and
it does perform better for random inputs.

Off-line Algorithms

If we are allowed to view the entire item list before producing an answer, then we
should expect to do better. Indeed, since we can eventually find the optimal packing
by exhaustive search, we already have a theoretical improvement over the on-line
case.

The major problem with all the on-line algorithms is that it is hard to pack the
large items, especially when they occur late in the input. The natural way around this
is to sort the items, placing the largest items first. We can then apply first fit or best
fit, yielding the algorithms first fit decreasing and best fit decreasing, respectively.
Figure 10.27 shows that in our case this yields an optimal solution (although, of
course, this is not true in general). —

In this section, we will deal with first fit decreasing. The results for best fit
decreasing are almost identical. Since it is possible that the item sizes are not distinct,
some authors prefer to call the algorithm first fit nonincreasing. We will stay with
the original name. We will also assume, without loss of generality, that input sizes
are already sorted.

The first remark we can make is that the bad case, which showed first fit using
10M bins instead of 6M bins, does not apply when the items are sorted. We will
show that if an optimal packing uses M bins, then first fit decreasing never uses more
than (4M + 1)/3 bins.
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Figure 10.27 First fit for 0.8, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1

The result depends on two observations. First, all the items with welght larger
than 1 will be placed in the first M bins. This implies that all the items in the extra
bins have weight at most §. The second observation is that the number of items in
the extra bins can be at most M - 1. Combining these two results, we find that at
most [(M — 1)/3] extra bins can be required. We now prove these two observations.

LEMMA 10.1.

Let the N items have (sorted in decreasing order) input sizes $1,52,...,5N,
respectively, and suppose that the optimal packing is M bins. Then all items
that first fit decreasing places in extra bins have size at most §.

PROOF: .
Suppose the ith item is the first placed in bin M + 1. We need to show that
si = 3. We will prove this by contradlcnon Assume s; > 1.

It follows that sy, s3,..., §i-1 > 3 3, since the sizes are arranged in sorted
order. From this it follows thag all bins By, B,, ..., By have at most two items
each.

Consider the state of the system after the i — 1st item is placed in a bin, but
before the ith item is placed. We now want to show that (under the assumption
that s; > 3) the first M bins are arranged as follows: First there are some bins
with exactly one element, and then the remaining bins have two elements.

Suppose there were two bins B, and By, such that 1 = x <y = M, B,
has two items, and B, has one item. Let x; and x; be the two items in By, and
let y; be the item in B,. x1 = y,, since x; was placed in the earlier bin. x; = s;,
by similar reasoning. Thus, x; + x; = y; + s;. This implies that s; could be
placed irr By. By our assumption this is not possible. Thus, if s; > 1, then, at
the time that we try to process s;, the first M bins are arranged such that the
first j have one element and the next M — j have two elements.

To prove the lemma we will show that there is no way to place all the items
in M bins, which contradicts the premise of the lemma.

Clearly, no two items si, s3,..., s; can be placed in one bin, by any
algorithm, since if they could, first fit would have done so too. We also know
that first fit has not placed any of the items of size s;+1, 5j+2,..., s; into the
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first § bins, so none of them fit. Thus, in any packing, specifically the optimal
packing, there must be j bins that do not contain these items. It follows that the
items of size sj4+1, Sj+2,. .+, Si—1 Must be contained in some set of M — j bins,
and from previous considerations, the total number of such items is 2(M — j).*

The proof is completed by noting that if s; > 1, there is no way for s; to be
placed in one of these M bins. Clearly, it cannot go in one of the j bins, since if it
could, then first fit would have done so too. To place it in one of the remaining
M — j bins requires distributing 2(M — j) + 1 items into the M — j bins. Thus,
some bin would have to have three items, each of which is larger than 3, a clear
impossibility.

This contradicts the fact that all the sizes can be placed in M bins, so the
original assumption must be incorrect. Thus, s; = 3.

LEMMA 10.2.
The number of objects placed in extra bins is at most M — 1.

PROOF:

Assume that there are at least M objects placed in extra bins. We know that
SN . si = M, since all the objects fit in M bins. Suppose that B; is filled with
W ; total weight for 1 = j = M. Suppose the first M extra objects have sizes
X1,%2,...,%M. Then, since the items in the first M bins plus the first M extra
items are a subset of all the items, it follows that

N M M M
PWED LS S LA

i=1 =1 j=1 =1
Now W; + x; > 1, since otherwise the item corresponding to x; would have
been placed in B;. Thus

N M
>Ss>>1>M
i=1 i=1

But this is impossible if the N items can be packed in M bins. Thus, there can
be at most M — 1 extra items.

THEOREM 10.4.
Let M be the optimal number of bins required to pack a list 1 of items. Then
first fit decreasing never uses more than (4M + 1)/3 bins.

PROOF:

There are M — 1 extra items, of size at most % Thus, there can be at most
[(M — 1)/3] extra bins. The total number of bins used by first fit decreasing is
thus at most [(4M — 1)/3] < (4M + 1)/3.

It is possible to prove a much tighter bound for both first fit decreasing and
next fit decreasing.

*Recall that first fit packed these elements into M — j bins and placed two items in each bin. Thus, there
are 2(M - j) items.
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Optimal First Fit Decreasing
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Figure 10.28 Example where first fit decreasing uses 11M bins, but only 9M bins
are required

THEOREM 10.5.

Let M be the optimal number of bins required to pack a list I of items. Then
first fit decreasing never uses more than XM + 4 bins. There exist sequences
such that first fit decreasing uses LM bins.

PROOF:

The upper bound requires a very complicated analysis. The lower bound is
exhibited by a sequence consisting of 6M elements of size 2 + €, followed by
6M elements of size 4 + 25, followed by 6M elements of size 4 + €, followed
by 12M elements of size § — 2€. Figure 10.28 shows that the optimal packing
requires 9IM bins, but first fit decreasing uses 11M bins.

In practice, first fit decreasing performs extremely well. If sizes are chosen
uniformly over the unit interval, then the expected number of extra bins is @(v/M).
Bin packing is a fine example of how simple greedy heuristics can give good results.

10.2. Divide and Conquer

Another common technique used to design algorithms is divide and conquer. Divide,

and conquer algorithms consist of two parts:

Divide: Smaller problems are solved recursively (except, of course, base cases).

Conguer: The solution to the original problem is then formed from the solutions
to the subproblems.

Traditionally, routines in which the text contains at least two recursive calls
are called divide and conquer algorithms, while routines whose text contains only
one recursive call are not. We generally insist that the subproblems be disjoint (that
is, essentially nonoverlapping). Let us review some of the recursive algorithms that
have been covered in this text.
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We have already seen several divide and conquer algorithms. In Section 2.4.3,
we saw an O(N logN) solution to the maximum subsequence sum problem. In
Chapter 4, we saw linear-time tree traversal strategies. In Chapter 6, we saw the
classic examples of divide and conquer, namely mergesort and quicksort, which have
O(N log N ) worst-case and average-case bounds, respectively.

We have also seen several examples of recursive algorithms that probably do
not classify as divide and conquer, but merely reduce to a single simpler case. In
Section 1.2, we saw a simple routine to print a number. In Chapter 2, we used
recursion to perform efficient exponentiation. In Chapter 4, we examined simple
search routines for binary search trees. In Section 5.6, we saw simple recursion used
to merge leftist heaps. In Section 6.7, an algorithm was given for selection that
takes linear average time. The disjoint set Find operation was written recursively
in Chapter 8. Chapter 9 showed routines to recover the shortest path in Dijkstra’s
algorithm and other procedures to perform depth-first search in graphs. None of these
algorithms are really divide and conquer algorithms, because only one recursive call is
performed.

We have also seen, in Section 2.4, a very bad recursive routine to compute the

- Fibonacci numbers. This could be called a divide and conquer algorithm, but it is

terribly inefficient, because the problem really is not divided at all.

In this section, we will see more examples of the divide and conquer paradigm.
Our first application is a problem in computational geometry. Given N points in
a plane, we will show that the closest pair of points can be found in O(N logN)
time. The exercises describe some other problems in computational geometry which
can be solved by divide and conquer. The remainder of the section shows some
extremely interesting, but mostly theoretical, results. We provide an algorithm which
solves the selection problem in O(N) worst-case time. We also show that 2 N-bit
numbers can be multiplied in o(N2) operations and that two N X N matrices can
be multiplied in o(N3) operations. Unfortunately, even though these algorithms

. have better worst-case bounds than the conventional algorithms, none are practical

except for very large inputs.

10.2.1. Running Time of Divide and Conquer Algorithms

All the efficient divide and conquer algorithms we will see divide the problems into
subproblems, each of which is some fraction of the original problem, and then
perform some additional work to compute the final answer. As an example, we have
seen that mergesort operates on two problems, each of which is half the size of the
original, and then uses O(N) additional work. This yields the running time equation
(with appropriate initial conditions)

T(N) = 2T(N/2) + O(N)

We saw in Chapter 6 that the solution to this equation is O(N log N ). The following
theorem can be used to determine the running time of most divide and conquer
algorithms.
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THEOREM 10.6.
The solution to the equation T(N) = aT(N/b) + O(N*), where a = 1 and

b>1,is .
O(N'os4) ifa > bt
T(N) =<{ O(N*logN) ifa = b*
O(N*) ifa < bt

PROOF: '
Following the analysis of mergesort in Chapter 6, we will assume that N is a
power of b; thus, let N = b™. Then N/b = ™! and N* = (b"')i = bmk =
b*™ = (b*)™. Let us assume T (1) = 1, and ignore the constant factor in @(N¥).
Then we have

T(b™) = aT(b™ 1) + (b*)™

If we divide through by 4™, we obtain the equation

T(b™) _ (™) +{2’f] (10.3)

am am-1 a

We can apply this equation for other values of m, obtaining

T bm—l T bm—z bk m=1
w1 (] s
T2 T (6™
b= 1o +[;] (10.5)
Ty T (6]
¢(11 ) - ‘(,0 ) +[7l (10.6)

We use our standard trick of adding up the telescoping equations (10.3) through
(10.6). Virtually all the terms on the left cancel the leading terms on the right,
yielding :

Tbm . 2 bt] |
= 1+Z[;} (10.7)
m k i
= [%] (10.8)
i=0
Thus

m B i
T(N) = T(b™) = a”’Z{b ] (10.9)
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If 2 > bk, then the sum is a geometric series with ratio smaller than 1. Since
the sum of infinite series would converge to a constant, this finite sum is also
bounded by a constant, and thus Equation (10.10) applies:

T(N) = O@™) = O(a"#N) = O(N'°&:2) (10.10)

If @ = b*, then each term in the sum is 1. Since the sum contains 1 + log, N
terms and ¢ = b* implies that log,a = &,

T(N) = O(a™log, N) = O(N'®?log, N) = O(N*log, N)

= O(N*logN) (10.11)
Finally, if 2 < b*, then the terms in the geometric series are larger than1, We
obtain.
ki ym+1 _
TNy = &1 - oambtiay) = 041" = O

(bkla) — 1
(10.12)

proving the last case of the theorem.

As an example, mergesort hasa = b = 2 and k = 1. The second case applies,
giving the answer O(N log N ). If we solve three problems, each of which is half the
original size, and combine the solutions with O(N) additional work, then a = 3,
b = 2and k = 1. Case 1 applies here, giving a bound of O(N°823) = O(N1%%). An
algorithm that solved three half-sized problems, but required O(N?) work to merge
the solution, would have an O(N?) running time, since the third case would apply.

There are two important cases that are not covered by Theorem 10.6. We state
two more theorems, leaving the proofs as exercises. Theorem 10.7 generalizes the
previous theorem.

THEOREM 10.7.

The solution to the equation T(N) = aT(N/b) + ®(N*logf N), wherea = 1,
b>1l,andp = 0is

O(N'ogs ) - ifa > bt
T(N) =4 O(N*log’*'N) ifa = bk
O(N*log’ N)  ifa <bk

THEOREM 10.8.

If Zf-;l a; < 1, then the solution to the equation T(N) = Z:Ll T(a;N) +
O(N)is T(N) = O(N).

10.2.2. Closest-Points Problem

The input to our first problem is a list P of pointsina plane. If p; = (x1, y1)and p; =
(%2, y2), then the Euclidean distance between p; and p; is [(x; — x2)% + (y1 — y2)2]12.
We are required to find the closest pair of points. It is possible that two points have
the same position; in that case that pair is the closegt, with distance zero.
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If there are N points, then there are N(N — 1)/2 pairs of distances. We can
check all of these, obtaining a very short program, but at the expense of an O(N?)
algorithm. Since this approach is just an exhaustive search, we should expect to do
better.

Let us assume that the points have been sorted by x coordinate. At worst, this
adds O(N log N) to the final time bound. Since we will show an O(N log N) bound
for the entire algorithm, this sort is essentially free, from a complexity standpoint.

Figure 10.29 shows a small sample point set P. Since the points are sorted by x
coordinate, we can draw an imaginary vertical line that partitions the point set into
two halves, Py and Pg. This is certainly simple to do. Now we have almost exactly
the same situation as we saw in the maximum subsequence sum problem in Section
2.4.3. Either the closest points are both in Py, or they are both in Py, or one is in
Py and the other is in Pg. Let us call these distances d;, dg, and d¢. Figure 10.30
shows the partition of the point set and these three distances.

We can compute d;, and dg recursively. The problem, then, is to compute d¢.
Since we would like an O(N log N) solution, we must be able to compute d¢ with
only O(N) additional work. We have already seen that if a procedure consists of
two half-sized recursive calls and O(N) additional work, then the total time will be
O(N logN).

Let & = min(dy, dg). The first observation is that we only need to compute
dc if d¢c improves on 8. If d¢ is such a distance, then the two points that define
dc must be within & of the dividing line; we will refer to this area as a strip. As
shown in Figure 10.31, this observation limits the number of points that need to be
considered (in our case, § = dRg).

There are two strategies that can be tried to compute d¢. For large point sets
that are uniformly distributed, the number of points that are expected to be in the
strip is very small. Indeed, it is easy to argue that only O(\/l_\IJ)) points are in the
strip on average. Thus, we could perform a brute force calculation on these points
in O(N) time. The pseudocode in Figure 10.32 implements this strategy, assuming
the C convention that the points are indexed starting at 0.

Figure 10.29 A small point set .
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Figure 10.30 P partitioned into P, and Pg; shortest distances are shown
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Figure 10.31 Two-lane strip, containing all points considered for d¢ strip

/* Points are all in the strip */

for( i = 0; 1 < NumPointsInStrip; i++ )
for(j =1 + 1; j < NumPointsInStrip; j++ )
if( Dist(P;,,P;) < & )
5 = Dist(P;, P;);

Figure 10.32 Brute force calculation of min(8, Dc)
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/* Points are all in the strip and sorted by y coordinate */

for( i = 0; i < NumPointsInStrip; i++ )
for( j =1 + 1; j < NumPointsInStrip; j++ )
if( P; and P;'s coordinates differ by more than § )
break; /* Go to next P;. */
else
if( Dist(P;,P;) < 6 )
= .Dist(P,-, Pi);

Figure 10.33 Refined calculation of min(8, D¢)

In the worst case, all the points could be in the strip, so this strategy does
not always work in linear time. We can improve this algorithm with the following
observation: The y coordinates of the two points that define d¢ can differ by at
most 8. Otherwise, d¢ > 8. Suppose that the points in the strip a e sorted by their
y coordinates. Therefore, if p; and p;’s y coordinates differ by more than 8, then we
can proceed to p;+1. This simple modification is 1mplemented in Figure 10. 33

This extra test has a significant effect on the runmng time, because for. each p,
only a few points p; are examined before p;’s and p,’s y coordinates differ by more
than 8 and force an exit from the inner for loop.‘Flgure 10.34 shows, for i instance,

that for point p3, only the two points ps and‘ '""’fhe in the strip w1thm
distance. s

Figure 10.34 Only p4 and ps are considered in the éécond for loop
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Pn Pr2 PR Pr2
Left half (A x A) Right half (A x 1)
PL3 PL4a PR3 PRra

Figure 10.35 At most eight points fit in the rectangle; there are two coordinates
shared by two points each

In the worst case, for any point p;, at most 7 points p, are considered. This
is because these points must lie either in the 8 by & square in the left half of the
strip or in the 8 by & square in the right half of the strip. On the other hand, all
the points in each 8 by 8 square are separated by at least 8. In the worst case, each
square contains four points, one at each corner. One of these points is p;, leaving
at most seven points to be considered. This worst-case situation is shown in Figure
10.35. Notice that even though p;; and pgry have the same coordinates, they could
be different points. For the actual analysis, it is only important that the number of
points in the A by 2A rectangle be O(1), and this much is certainly clear.

Because at most seven points are considered for each p;, the time to compute a
dc that is better than & is O(N). Thus, we appear to have an O(N log N) solution
to the closest-points problem, based on the two half-sized recursive calls: plus the
linear extra work to combine the two results. However, we do not quite. have an
O(N log N) solution yet. ’

The problem is that we have assumed that a list of points sorted by y coordinate
is available. If we perform this sort for each recursive call, then we have O(N log N)
extra work: this gives an O(N log® N) algorithm. This is not all that bad,"efs‘pecially
when compared to the brute force O(NZ2). However, it is not hard to reduce the
work for each recursive call to O(N), thus ensuring an O(N log N) algorithm.

We will maintain two lists. One is the point list sorted by x coordinate, and
the other is the point list sorted by y coordinate. We will call these lists P and
Q, respectively. These can be obtained by a preprocessing sorting step at cost
O(N log N) and thus does not affect the time bound. Py, and Qy are the lists passed
to the left-half recursive call, and Pr and Qg are the lists passed to the right-half
recursive call. We have already seen that P is easily split in the middle. Once the
dividing line is known, we step through O sequentially, placing each element in Q;
or Qg as appropriate. It is easy to see that Qy, and Qg will be automatically sorted
by y coordinate. When the recursive calls return, we scan through the Q list and
discard all the points whose x coordinates are not within the strip. Then Q contains
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only points in the strip, and these points are guaranteed to be sorted by their y
coordinates.

This strategy ensures that the entire algorithm is O(N log N), because only
O(N) extra work is performed.

10.2.3. The Selection Problem

The selection problem requires us to find the kth smallest element in a list S of N
elements. Of particular interest is the special case of finding the median. This occurs
when k = [N/2].

In Chapters 1, 5, and 6 we have seen several solutions to the selection problem.
The solution in Chapter 6 uses a variation of quicksort and runs in O(N) average
time. Indeed, it is described in Hoare’s original paper on quicksort.

Although this algorithm runs in linear average time, it has a worst case of
O(N?2). Selection can easily be solved in O(N log N) worst-case time by sorting
the elements, but for a long time it was unknown whether or not selection could
be accomplished in O(N) worst-case time. The guickselect algorithm outlined in
Section 6.7.6 is quite efficient in practice, so this was mostly a question of theoretical
interest.

Recall that the basic algorithm is a simple recursive strategy. Assuming that
N is larger than the cutoff point where elements are simply sorted, an element v,
known as the pivot, is chosen. The remaining elements are placed into two sets,
S1 and S;. S; contains elements that are guaranteed to be no larger than v, and
S, contains elements that are no smaller than v. Finally, if & < |S;|, then the kth
smallest element in § can be found by recursively computing the kth smallest element
in S;. If k = |§1] + 1, then the pivot is the kth smallest element. Otherwise, the
kth smallest element in S is the (k — |S1| — 1)st smallest element in S,. The main
difference between this algorithm and quicksort is that there is only one subproblem
to solve instead of two.

In order to obtain a linear algorithm, we must ensure that the subproblem is
only a fraction of the original and not merely only a few elements smaller than the
original. Of course, we can always find such an element if we are willing to spend
some time to do so. The difficult problem is that we cannot spend too much time
finding the pivot.

For quicksort, we saw that a good choice for pivot was to pick three elements
and use their median. This gives some expectation that the pivot is not too bad, but
does not provide a guarantee. We could choose 21 elements at random, sort them in
constant time, use the 11th largest as pivot, and get a pivot that is even more likely
to be good. However, if these 21 elements were the 21 largest, then the pivot would
still be poor. Extending this, we could use up to O(N/log N) elements, sort them
using heapsort in O(N) total time, and be almost certain, from a statistical point
of view, of obtaining a good pivot. In the worst case, however, this does not work
because we might select the O(N/log N) largest elements, and then the pivot would
be the [N — O(N/log N )]th largest element, which is not a constant fraction of N.

The basic idea s still nseful. Indeed, we will see that we can use it to improve the
expected number of comparisons that quickselect makes. To get a good worst case,
however, the key idea is to use one more level of indirection. Instead of finding the
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median from a sample of random elements, we will find the median from a sample
of medians.
The basic pivot selection algorithm is as follows:

1. Arrange the N elements into | N/5] groups of five elements, ignoring the (at
most four) extra elements.

2. Find the median of each group. This gives a list M of [N/5] medians.
3. Find the median of M. Return this as the pivot, ».

We will use the term median-of-median-of-five partitioning to describe the
quickselect algorithm that uses the pivot selection rule given above. We will now
show that median-of-median-of-five partitioning guarantees that each recursive sub-
problem is at most roughly 70 percent as large as the original. We will also show
that the pivot can be computed quickly enough to guarantee an O(N) running time
for the entire selection algorithm.

Let us assume for the moment that N is divisible by 5, so there are no extra
elements. Suppose also that N/5 is odd, so that the set M contains an odd number of
elements. This provides some symmetry, as we shall see. We are thus assuming, for
convenience, that N is of the form 10k + 5. We will also assume that all the elements
are distinct. The actual algorithm must make sure to handle the case where this is
not true, Figure 10.36 shows how the pivot might be chosen when N = 45.

In Figure 10.36, v represents the element which is selected by the algorithm as
pivot. Since v is the median of nine elements, and we are assuming that all elements
are distinct, there must be four medians that are larger than v and four that are
smaller. We denote these by L and S, respectively. Consider a group of five elements
with a large median (type L). The median of the group is smaller than two elements

Figure 10.36 How the pivot is chosen
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in the group and larger than two elements in the group. We will let H represent
the huge elements. These are elements that are known to be larger than a large
median. Similarly, T represents the tiny elements, which are smaller than a small
median. There are 10 elements of type H: Two are in each of the groups with an L
type median, and two elements are in the same group as v. Similarly, there are 10
elements of type T.

Elements of type L or H are guaranteed to be larger than v, and elements of
type S or T are guaranteed to be smaller than v. There are thus guaranteed to be 14
large and 14 small elements in our problem. Therefore, a recursive call could be en
at most 45 — 14 — 1 = 30 elements.

Let us extend this analysis to general N of the form 10k + 5. In this case, there
are k elements of type L and k elements of type S. There are 2k + 2 elements of
type H, and also 2k + 2 elements of type T. Thus, there are 3k + 2 elements that
are guaranteed to be larger than v and 3k + 2 elements that are guaranteed to be
smaller. Thus, in this case, the recursive call can contain at most 7k + 2 < 0.7N
elements. If N is not of the form 10k + §, similar arguments can be made without
affecting the basic result.

It remains to bound the running time to obtain the pivot element. There are two
basic steps. We can find the median of five elements in constant time. For instance, it
is not hard to sort five elements in eight comparisons. We must do this |[N/5] times,
so this step takes O(N) time. We must then compute the median of a group of [N/5]
elements. The obvious way to do this is to sort the group and return the element
in the middle. But this takes O(N/5| log|N/5]) = O(N log N) time, so this does
not work. The solution is to call the selection algorithm recursively on the |N/5]
elements. _

This completes the description of the basic algorithm, There are still some details
that need to be filled in if an actual implementation is desired. For instance, duplicates
must be handled correctly, and the algorithm needs a cutoff large enough to ensure
that the recursive calls make progress. There is quite a large amount of overhead
involved, and this algorithm is not practical at all, so we will not describe any more
of the details that need to be considered. Even so, from a theoretical standpoint, the
algorithm is a major breakthrough, because, as the following theorem shows, the
running time is linear in the worst case.

THEOREM 10.9.
The running time of quickselect using median-of-median-of-five partitioning is
O(N).

PROOFR:
The algorithm consists of two recursive calls of size 0.7N and 0.2N, plus linear
extra work. By Theorem 10.8, the running time is linear.

Reducing the Average Number of Comparisons

Divide and conquer can also be used to reduce the expected number of comparisons
required by the selection algorithm. Let us look at a concrete example. Suppose we
have a group S of 1,000 numbers and are looking for the 100th smallest number,
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which we will call X. We choose a subset S’ of S consisting of 100 numbers. We
would expect that the value of X is similar in size to the 10th smallest number in §'.
More specifically, the fifth smallest number in S is almost certainly less than X, and
the 15th smallest number in S’ is almost certainly greater than X.

More generally, a sample S’ of s elements is chosen from the N elements,
Let 8 be some number, which we will choose later so as to minimize the average
number of comparisons used by the procedure. We find the (v; = ks/N — 8)th
and (v = ks/N + 8)th smallest elements in §'. Almost certainly, the kth smallest
element in S will fall between v, and v,, so we are left with a selection problem
on 28 elements. With low probability, the kth smallest element does not fall in this
range, and we have considerable work to do. However, with a good choice of s and
8, we can ensure, by the laws of probability, that the second case does not adversely
affect the total work.

If an analysis is performed, we find that if s = N2 log”® N and 6 =
N13Jog?” N, then the expected number of comparisons is N + &+ O(N2? log'” N),
which is optimal except for the low-order term. (If kK > N/2, we can consider the
symmetric problem of ﬁndmg the (N — k)th largest element.)

Most of the analysis is easy to do. The last term represents the cost of
performing the two selections to determine v; and v,. The average cost of the
partitioning, assuming a reasonably clever strategy, is equal to N plus the expected
rank of v, in 8, which is N + & + O(N &/s). If the kth element winds up in §’, the
cost of finishing the algorithm is equal to the cost of selection on §’, namely, O(s). If
the kth smallest element doesn’t wind up in S’, the cost is O(N ). However, s and &
have been chosen to guarantee that this happens with very low probability o(1/N),
so the expected cost of this possibility is o(1), which is a term that goes to zero as N
gets large. An exact calculation is left as Exercise 10.21.

This analysis shows that finding the median requires about 1.SN comparisons
on average. Of course, this algorithm requires some floating-point arithmetic to
compute s, which can slow down the algorithm on some machines. Even so,
experiments have shown that if correctly implemented, this algorithm compares
favorably with the quickselect implementation in Chapter 6.

10.2.4. Theoretical Improvements for Arithmetic Problems

In this section we describe a divide and conquer algorithm that multiplies two
N-digit numbers. Our previous model of computation assumed that multiplication
was done in constant time, because the numbers were small. For large numbers, this
assumption is no longer valid. If we measure multiplication in terms of the size of
numbers being multiplied, then the natural multiplication algorithm takes quadratic
time. The divide and conquer algorithm runs in subquadratic time. We also present
the classic divide and conquer algorithm that multiplies two N by N matrices in
subcubic time.

Multiplying Integers

Suppose we want to multiply two N-digit numbers X and Y. If exactly one of X
and Y is negative, then the answer is negative; otherwise it is positive. Thus, we
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can perform this check and then assume that X, Y = 0. The algorithm that almost
everyone uses when multiplying by hand requires @(N 2) operations, because each
digit in X is multiplied by each digit in Y.

IfX = 61,438,521 and Y = 94,736,407, XY = 5,820,464,730,934,047. Let
us break X and Y into two halves, consisting of the most significant and least
significant digits, respectively. Then X; = 6,143, Xgr = 8,521, Y, = 9,473, and
Yr = 6,407. We alsohave X = X1 10*+XgrandY = Y 1 10* + Y z. It follows that

XY = XLYLIOB + (X YR + XRYL)104 + XrYr

Notice that this equation consists of four multiplications, X1 Y1, X1 Y g, XrY 1,
and XrY g, which are each half the size of the original problem.(N/2 digits). The
multiplications by 10® and 10* amount to the placing of zeros. This and the
subsequent additions add only O(N) additional work. If we perform these four
multiplications recursively using this algorithm, stopping at an appropriate base
case, then we obtain the recurrence

T(N) = 4T(N/2) + O(N)

From Theorem 10.6, we see that T(N) = O(N?2), so, unfortunately, we have
not improved the algorithm. To achieve a subquadratic algorithm, we must use less
than four recursive calls. The key observation is that

X Yr+XrYL = (X = Xg)NYr— YY)+ XYL + XgrYR

Figure 10.37 The divide and conquer algorithm in action

Computational
Function Value Complexity
Xr 6,143 Given
Xr 8,521 Given
Y, 9,473 Given
Yr 6,407 Given
D, = X1 — Xz -2,378 O(N)
D, =Yr-Y_ —3,066 O(N)
XYL 58,192,639 T(N/2)
XgYr 54,594,047 T(N/2)
D,D, 7,290,948 T(N/2)
D3 =DiD; + XYy + XrYr 120,077,634 O(N)
XrYr 54,594,047 Computed above
D;10* 1,200,776,340,000 O(N)
X, Y 108 5,819,263,900,000,000 O(N)
X Y 108 + D310* + XpYx 5,820,464,730,934,047 O(N)
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Thus, instead of using two multiplications to compute the coefficient of 10*, we can
use one multiplication, plus the result of two multiplications that have already been
performed. Figure 10.37 shows how only three recursive subproblems need to be

solved. ‘
It is easy to see that now the recurrence equation satisfies

T(N) = 3T(N/2) + O(N)

and so we obtain T(N) = O(N'%8:3) = O(N1%), To complete the algorithm, we
must have a base case, which can be solved without recursion.

When both numbers are one-digit, we can do the multiplication by table lookup.
If one number has zero digits, then we return zero. In practice, if we were to use this
algorithm, we would choose the base case to be that which is most convenient for
the machine. '

Although this algorithm has better asymptotic performance than the standard
quadratic algorithm, it is rarely used, because for small N the overhead is significant,
and for larger N there are even better algorithms. These algorithms also make
extensive use of divide and conquer.

Matrix Multiplication

A fundamental numerical problem is the multiplication of two matrices. Figure
10.38 gives a simple O(N3) algorithm to compute C = AB, where A, B, and C
are N X N matrices. The algorithm follows directly from the definition of matrix
multiplication. To compute C; ;, we compute the dot product of the ith row in A
with the jth column in B. As usual, arrays begin at index 0.

For a long time it was assumed that 3(N3) was required for matrix multipli-
cation. However, in the late sixties Strassen showed how to break the (N 3) barrier.

Figure 10.38 Simple O(N3) matrix multiplication

/* Standard matrix multiplication */
/* Arrays start at 0 */

void
MatrixMultiply( Matrix A, Matrix B, Matrix C, int N )
; ,
int 1, j, k;
for( i =0; i <N; i++ ) /* Initialization */
for( j =0; j < N; j++
CLi1l31=0.0;
for( i =0; i < N; i++ )
for( j =0; j < N; j++ )
for( k = 0; k < N; k++ )
CLilli]+=Ali][k]*B[LkI[]I;
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[Am Al.z][Bl,l B1,2]=[C1.1 Cl,z]
A1 AzxjlBai Bi Cy1 Caz

Figure 10.39 Decomposing AB = C into four quadrants
The basic idea of Strassen’s algorithm is to divide each matrix into four quadrants,
as shown in Figure 10.39. Then it is easy to show that

Ci1 = A1,1B1,1 + A12By

Ci2 = A1,1B12 + A12B)p

C21 = A2,1By1 + Az2B2

Ca2 = A21B12 + A22B2

As an example, to perform the multiplication AB
341 6|5 6 9 3
1125 7ll4 5 31
AB = 51 2 911 8 4
4 3 5 6|13 1 41
we define the following eight N/2 by N/2 matrices:
3 4 1 6 5 6 9 3
Al-lz[l 2} Am:[s 7] Bl'1=[4 5] Bl'z=[3 1]

1 4
=Y e 2 el Y el

We could then perform eight N/2 by N/2 matrix multiplications and four N/2
by N/2 matrix additions. The matrix additions take O(N2) time. If the matrix
multiplications are done recursively, then the running time satisfies

T(N) = 8T(N/2) + O(N?)

From Theorem 10.6, we see that T(N) = O(N3), so we do not have an
improvement. As we saw with integer multiplication, we must reduce the number of
subproblems below 8. Strassen used a strategy similar to the integer multiplication
divide and conquer algorithm and showed how to use only seven recursive calls by
carefully arranging the computations. The seven multiplications are

M; = (A1,2 — A2.2)(B2,1 + By)
M; = (A1,1 + A22)(B1,1 + By)
M3 = (A1,1 — A21)(B1,1 + By,2)
M4 = (A11 + A12)Ba2
Ms = A1,1(B12 — By)
Mg = A23(B1 — B11)
M7 = (A1 + A22)B1,
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Once the multiplications are performed, the final answer can be obtained with
eight more additions.

Ci1 = My +M; — Mg+ Mg
Ciz2 = M4y + M;
Cz1 = Mg + M7
Cy2 =M;—-M3+Ms—M,

It is straightforward to verify that this tricky ordering produces the desired
values. The running time now satisfies the recurrence

T(N) = 7T(N/2) + O(N?)

The solution of this recurrence is T(N) = O(N&:7) = O(N281),

As usual, there are details to consider, such as the case when N is not a power
of 2, but these are basically minor nuisances. Strassen’s algorithm is worse than the
straightforward algorithm until N is fairly large. It does not generalize for the case
where the matrices are sparse (contain many zero entries), and it does not easily
parallelize. When run with floating-point entries, it is less stable numerically than the
classic algorithm. Thus, it has only limited applicability. Nevertheless, it represents
an important theoretical milestone and certainly shows that in computer science, as
in many other fields, even though a problem seems to have an intrinsic complexity,
nothing is certain until proven.

10.3. Dynamic Programming

In the previous section, we saw that a problem that can be mathematically expressed
recursively can also be expressed as a recursive algorithm, in many cases yielding a
significant performance improvement over a more naive exhaustive search.

Any recursive mathematical formula could be directly translated to a recursive
algorithm, but the underlying reality is that often the compiler will not do justice to
the recursive algorithm, and an inefficient program results. When we suspect that
this is likely to be the case, we must provide a little more help to the compiler,
by rewriting the recursive algorithm as a nonrecursive algorithm that systematically
records the answers to the subproblems in a table. One technique that makes use of
this approach is known as dynamic programming.

10.3.1. Using a Table Instead of Recursion

In Chapter 2, we saw that the natural recursive program to compute the Fibonacci
numbers is very inefficient. Recall that the program shown in Figure 10.40 has
a running time T(N) that satisfies T(N) = T(N — 1) + T(N ~ 2). Since T(N)
satisfies the same recurrence relation as the Fibonacci numbers and has the same
initial conditions, T(N) in fact grows at the same rate as the Fibonacci numbers,
and is thus exponential.

On the other hand, since to compute Fy, all that is needed is Fy-; and Fn-3,
we only need to record the two most recently computed Fibonacci numbers. This
yields the O(N) algorithm in Figure 10.41.



10.3. DYNAMIC PROGRAMMING

/* Compute Fibonacci numbers as discussed in Chapter 1 */

int
Fib( int N )
{

ifCN<=1)
return 1;
else
return Fib( N - 1) + Fib( N - 2 );
}

Figure 10.40 Inefficient algorithm to compute Fibonacci numbers

int
Fibonacci( int N )
{
int i, Last, NextTolast, Answer;
ifFCN<=1)
return 1;
Last

= NextTolLast = 1;

for( i =2; 1 <= N; i++ )

{
Answer = Last + NextTolast;
NextToLast = Last;
Last = Answer;

}

return Answer;

}

Figure 10.41 Linear algorithm to compute Fibonacci numbers

The reason that the recursive algorithm is so slow is because of the algorithm
used to simulate recursion. To compute Fy, there is one call to Fy—; and Fy-».
However, since Fny_1 recursively makes a call to Fy-3 and Fy -3, there are actually
two separate calls to compute Fy ;. If one traces out the entire algorithm, then we
can see that Fx_3 is computed three times, Fx_4 is computed five times, Fy_s is
computed eight times, and so on. As Figure 10.42 shows, the growth of redundant
calculations is explosive. If the compiler’s recursion simulation algorithm were able
to keep a list of all precomputed values and not make a recursive call for an already
solved subproblem, then this exponential explosion would be avoided. This is why
the program in Figure 10.41 is so much more efficient.
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Figure 10.42 Trace of the recursive calculation of Fibonacci numbers

double

Eval( int N )

{
int 1;
double Sum;

Cif(N==10)

return 1.0;

else '

{
Sum = 0.0;
for( 1 =0; 1 < N; i++ )

Sum += Eval( i );

return 2.0 * Sum / N + N;

}

Figure 10.43 Recursive program to evaluate C(N) =
NSNS CH)+N

Figure 10.44 Trace of the recursive calculation in Eval
C5
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double

Eval( int N )

{
int i, j;
double Sum, Answer;
double *C;

C = malloc( sizeof( double ) * ( N+ 1) );
if( C = NULL )

FatalError( "Out of space!!!" );
CLO0] =1.0;
for( i =1; § <= Nj i++ )
{
Sum = 0.0;
for( j =0; j <i; j++ )
Sum += C[ j 1;
CLi]=2.0*Sum/ i+ 1;
}
Answer = C[ N J;
free( C );

return Answer;

}

Figure 10.45 Evaluating C(N) = 2/N Z C(t) +N
with a table

As a second example, we saw in Chapter 6 how to solve the recurrence
C(N) = (2/N )Z,_O C(i) + N, with C(0) = 1. Suppose that we want to check,
numerically, whether the solutlon we obtained is correct. We could then write the
simple program in Figure 10.43 to evaluate the recursion.

Once again, the recutswe calls duplicate work. In this case, the running time
T(N) satisfies T(N) = Z, -0 1 T(i) + N, because, as shown in Figure 10.44, there
is one (direct) recursive call of each size from 0 to N — 1, plus O(N) addmonal
work (where else have we seen the tree shown in Figure 10.44?). Solving for T(N),
we find that it grows exponentially. By using a table, we obtain the program in
Figure 10.45. This program avoids the redundant recursive calls and runs in O(N2).
It is not a perfect program; as an exercise, you should make the simple change that
reduces its running time to O(N).

10.3.2. Ordering Matrix Multiplications

Suppose we are given four matrices, A, B, C, and D, of dimensions A = 50 X 10,
B =10X40,C = 40X 30, and D = 30 XS. Although matrix multiplication is
not commutative, it is associative, which means that the matrix product ABCD can be
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parenthesized, and thus evaluated, in any order. The obvious way to multiply two
matrices of dimensions p X g and g X r, respectively, uses pgr scalar multiplications.
(Using a theoretically superior algorithm such as Strassen’s algorithm does not
significantly alter the problem we will consider, so we will assume this performance
bound.) What is the best way to perform the three matrix multiplications required
to compute ABCD?

In the case of four matrices, it is simple to solve the problem by exhaustive
search, since there are only five ways to order the multiplications. We evaluate each
case below:

¢ (A((BC)D)): Evaluating BC requires 10 X 40 X 30 = 12,000 multiplications.
Evaluating (BC)D requires the 12,000 multiplications to compute BC, plus
an additional 10 X 30 X § = 1,500 multiplications, for a total of 13,500.
Evaluating (A((BC)D)) requires 13,500 multiplications for (BC)D, plus an
additional 50 X 10 X § = 2,500 multiplications, for a grand total of 16,000
multiplications.

* (A(B(CD))): Evaluating CD requires 40 X 30 X § = 6,000 multiplications.
Evaluating B(CD) requires the 6,000 multiplications to compute CD, plus
an additional 10 X 40 X 5§ = 2,000 multiplications, for a total of 8,000.
Evaluating (A(B(CD))) requires 8,000 multiplications for B(CD), plus an
additional 50 X 10 X 5§ = 2,500 multiplications, for a grand total of 10,500
multiplications.

® ((AB)(CD)): Evaluating CD requires 40 X 30 X § = 6,000 multiplications.
Evaluating AB requires 50 X 10 X 40 =:20,000 multiplications. Evaluating
((AB)(CD)) requires 6,000 multiplications for CD, 20,000 multiplications for
AB, plus an additional 50 X 40X 5 = 10,000 multiplications for a grand total
of 36,000 multiplications.

¢ (((AB)C)D): Evaluating AB requires 50 X 10 X 40 = 20,000 multiplications.
Evaluating (AB)C requires the 20,000 multiplications to compute AB, plus
an additional 50 X 40 X 30 = 60,000 multiplications, for a total of 80,000.
Evaluating (((AB)C)D) requires 80,000 multiplications for (AB)C, plus an
additional 50 X 30 X 5 = 7,500 multiplications, for a grand total of 87,500
multiplications.

¢ ((A(BC))D): Evaluating BC requires 10 X 40 X 30 = 12,000 multiplications.
Evaluating A(BC) requires the 12,000 multiplications to compute BC, plus
an additional 50 X 10 X 30 = 15,000 multiplications, for a total of 27,000.
Evaluating ((A(BC))D) requires 27,000 multiplications fot A(BC), plus an
additional 50 X 30 X § = 7,500 multiplications, for a grand total of 34,500
multiplications.

The calculations show that the best ordering uses roughly one-ninth the number
of multiplications as the worst ordering. Thus, it might be worthwhile to perform a
few calculations to determine the optimal ordering. Unfortunately, none of the ob-
vious greedy strategies seems to work. Moreover, the number of possible orderings
grows quickly. Suppose we define T(N) to be this number. Then T(1) = T(2) = 1,
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T(3) = 2, and T(4) = $, as we have seen. In general,
N-1
T(N) = > T()T(N —i)
i=1

To see this, suppose that the matrices are Ay, Az, ..., AN, and the last multiplication
performed is (A1Az -+ A;)(Ai+1Ai42 --- AN). Then there are T (i) ways to compute
(A1A; ++-A;) and T(N — i) ways to compute (A;+1A;i4+2 - AN). Thus, there are
T ()T (N — i) ways to compute (A14A; -+ A;)(A;+1Ai+2 -~ An) for each possible 7.

The solution of this recurrence is the well-known Catalan numbers, which grow
exponentially. Thus, for large N, an exhaustive search through all possible orderings
is useless. Nevertheless, this counting argument provides a basis for a solution that
is substantially better than exponential. Let ¢; be the number of columns in matrix
A; for 1 =i =< N. Then A; has ¢;_; rows, since otherwise the multiplications are
not valid. We will define c( to be the number of rows in the first matrix, A;.

Suppose. #711.fRigre is the number of multlphcatlons required to multiply
A,_,f,AL,ﬂH AR,g;,, 1ARighs. For consistency, my.41.¢ = 0. Suppose the last multi-
plication is (Ar. *** Ai)(Ai+1*** Arighs), where Left < i < Right. Then the number
of multiplications used is 7104 + ;11 Right + CLefi—1CiCRighe- These three terms rep-
resent the multiplications required to compute (AL * A;), (Ai+1 - Agjgrt), and
their product, respectively.

If we define My 5 rigr: to be the number of multiplications required in an
optimal ordering, then, if Left < Right,

MLeft,Righ! = {M Lefti T M JRight T CLef—1Ci Cngbt}

L ft<1<Rtgbt
This equation implies that if we have an optimal multiplication arrangement of
Ares - ARigre, the subproblems Aj 4 - A; and A;;1 - Apigre cannot be performed
suboptimally. This should be clear, since otherwise we could improve the entire
result by replacing the suboptimal computation by an optimal computation.

The formula translates directly to a recursive program, but, as we have seen in
the last section, such a program would be blatantly inefficient. However, since there
are only approximately N'2/2 values of M. rigt: that ever need to be computed, it is
clear that a table can be used to store these values. Further examination shows that
if Right — Left = k, then the only values M, that are needed in the computation
of M. righe satisfy y — x < k. This tells us the order in which we need to compute
the table.

If we want to print out the actual ordering of the multiplications in addition to
the final answer M1,n, then we can use the ideas from the shortest-path algorithms
in Chapter 9. Whenever we make a change t0 M gign:, We record the value of i
that is responsible. This gives the simple program shown in Figure 10.46.

Although the emphasis of this chapter is not coding, it is worth noting that
many programmers tend to shorten variable names to a single letter. c, i, and k are
used as single-letter variables because this agrees with the names we have used in the
description of the algorithm, which is very mathematical. However, it is generally
best to avoid / as a variable name, because “1” looks too much like “1” and can
make for very difficult debugging if you make a transcription error.
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Returning to the algorithmic issues, this program contains a triply nested loop
and is easily seen to run in O(N?3) time. The references describe a faster algorithm,
but since the time to perform the actual matrix multiplication is still likely to be
much larger than the time to compute the optimal ordering, this algorithm is still
quite practical.

Compute optimal ordering of matrix multiplication */

C contains number of columns for each of the N matrices */
C[ 0 ] is the number of rows in matrix 1 */

Minimum number of multiplications is left in M[ 1 J[ N ] */
Actual ordering is computed via */

another procedure using LastChange */ ‘

M and LastChange are indexed starting at 1, instead of 0 */
Note: Entries below main diagonals of M and LastChange */
are meaningless and uninitialized */

void
OptMatrix( const long C[ ], int N,

{

}

TwoDimArray M, TwoDimArray LastChange )

int i, k, Left, Right;
long ThisM;

for( Left = 1; Left <= N; Left++ )
ML Left ][ Left ] = 0; :

for(C k = 1; k < N; ke+ ) /* k is Right - Left */
for( Left = 1; Left <= N - k; Left++ )

{
/* For each position */
Right = Left + k;
ML Left ][ Right ] = Infinity;
for( i = Left; i < Right; i++ )
ThisM = M[ Left J[ i J + M[ i + 1 ][ Right ]
+Cl Left -1]1*C[1i1 *cC[ Right 1;
if( ThisM < M[ Left ][ Right ] )
{ ‘
/* Update min */
M[ Left ][ Right ] = ThisM;
LastChange[ Left ][ Right. 1 = i;
}
}
}

Figure 10.46 Program to find optimal ordering of ma-

trix multiplications
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10.3.3. Optimal Binary Search Tree

Our second dynamic programmmg example considers the following input: We are
given a list of words, w1, w3, ..., wnN, and fixed probablhtxes P1s P25+ .+, PN Of their
occurrence. The problem is to arrange these words in a binary search tree in a way
that minimizes the expected total access time. In a binary search tree, the number of
comparisons needed to access an element at depth d is d + 1, so if w; is placed at
depth d;, then we want to minimize Z, _1 pi(l + di).

As an example, Figure 10.47 shows seven words along with their probability of
occurrence in some context. Figure 10.48 shows three possible binary search trees.
Their searching costs are shown in Figure 10.49,

The first tree was formed using a greedy strategy. The word with the highest:

probability of being accessed was placed at the root. The left and right subtrees
were then formed recursively. The second tree is the perfectly balanced search tree.
Neither of these trees is optimal, as demonstrated by the existence of the third tree.
From this we can see that neither of the obvious solutions works.

This is initially surprising, since the problem appears to be very similar to
the construction of a Huffman encoding tree, which, as we have already seen, can
be solved by a greedy algorithm. Construction of an optimal binary search tree is
harder, because the data are not constrained to appear only at the leaves, and also
because the tree must satisfy the binary search tree property. -

A dynamic programming solution follows from two observations. Once again,
suppose we are trying to place the (sorted) words wi g, Wiep+1s - - - » WRight—1> WRight
into a binary search tree. Suppose the optimal binary search tree has w; as the root,
where Left = i < Right. Then the left subtree must contain w4, ..., wi-1, and
the right subtree must contain w1, ..., Wgig (by the binary search tree property).
Further, both of these subtrees must also be optimal, since otherwise they could be
replaced by optimal subtrees, which would give a better solution for wp,g, . . ., Wright-
Thus, we can write a formula for the cost Cp.p righe of an optimal binary search tree.
Figure 10.50 may be helpful.

If Left > Right, then the cost of the tree is 0; this is the NULL case, which we
always have for binary search trees. Otherwise, the root costs p;. The left subtree
has a cost of Cp.p -1, relative to its root, and the right subtree has a cost of C; 1 right
relative to its root. As Figure 10.50 shows, each node in these subtrees 1s one
level deeper from w; than from their respective roots, so we must add 357} —Left P
and 3 Right p;. This gives the formula

i— Right
CLefi,Right = Lef min 40+ Crepi-1 + Ciryrign + > b+ > b
=g j=Left j=i+1
Right
=  min Crefri-1 + Cit1LRight + i
Left=i = Right Left,i—1 i+1,Right i;uﬂp/

From this equation, it is straightforward to write a program to compute the cost
of the optimal binary search tree. As usual, the actual search tree can be maintained
by saving the value of i that minimizes Cy g gign:. The standard recursive routine can
be used to print the actual tree.
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Word Probability
a 0.22
am 0.18
and 0.20
ege 0.05
if 0.25
the 0.02
two 0.08

Figure 10.47 Sample input for optimal binary search
. tree problem

Figure 10.48 Three possible binary search trees for data in previous table

Input Tree #1 Tree #2 Tree #3
Word  Probability Access Cost Access Cost Access Cost
w; j Once Sequence Once Sequence Once Sequence
a 0.22 2 0.44 3 0.66 2 0.44
am 0.18 4 0.72 2 0.36 3 0.54
and 0.20 3 0.60 3 0.60 1 0.20
egg 0.05 4 0.20 1 0.05 3 0.15
if 0.25 1 0.25 3 0.75 2 0.50
the 0.02 3 0.06 2 0.04 4 0.08
two 0.08 2 0.16 3 0.24 3 0.24
Totals 1.00 2.43 2.70 215

Figure 10.49 Comparison of the three binary search trees
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Wisl —WRight

Figure 10.50 Structure of an optimal binary search tree

Figure 10.51 shows the table that will be produced by the algorithm. For
each subrange of words, the cost and root of the optimal binary search tree are
maintained. The bottommost entry computes the optimal binary search tree for
the entire set of words in the input. The optimal tree is the third tree shown in
Figure 10.48.

The precise computanon for the optimal binary search tree for a partlcular
subrange, namely, am..if, is shown in Figure 10.52. It is obtained by computing
the minimum-cost tree obtained by placing am, and, egg, and if at the root. For
instance, when and is placed at the root, the left subtree contains am..am (of cost
0.18, via previous calculation), the right subtree contains egg..if (of cost 0.35), and
Pam + Pand + Degg + Dif = 0.68, for a total cost of 1.21.

Figure 10.51 Computation of the optimal binary search tree for sample input

Left=1  Left=2 Left=3 Left=4 Left=5 Left=6  Left=7

. a.a am..am | and..and | egg..egg if..if the..the | two..two
Iteration=1 - -
22| a [.18 [am | .20 [and | .05 [egg| .25 | if .02 the | .08 [two
Tteration=2 a.am | am..and | and..egg | egg 1f if th? the..two
58| a | .56 |and| .30 [and| .35 | if 29 | if |.12]two
) a.and | am.egg | and.if | egg..the | if.two
Iteration=3 - - -
1.02| am | .66 [and | .80 | if [.39 [ if 47| if
Iteration=4 a.egg am..if and..tl-le egg..tvt'o
1.17| am {1.21 and .84J if |.57] if
) a..if am..the | and..two
Iteration=5 '
1.83|and 1.27|and 1.0rz| if
a..the am..two
Iteration=6
o= T80  and [1.53] and
Iteration=7 a.two
2.15|and
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0+ 0.80+0.68=1.48 0.18 +0.35 +0.68 = 1.21

am. g @x

0.56 + 0.25 + 0.68 = 1.49 0.66 + 0 + 0.68 = 1.34

Figure 10.52 Computation of table entry (1.21, and) for am..if

The running time of this algorithm is O(N3), because when it is implemented,
we obtain a triple loop. An O(N?2) algorithm for the problem is sketched in the
exercises.

10.3.4. All-Pairs Shortest Path

Our third and final dynamic programming application is an algorithm to compute
shortest weighted paths between every pair of points in a directed graph G = (V, E).
In Chapter 9, we saw an algorithm for the single-source shortest-path problem, which
finds the shortest path from some arbitrary vertex s to all others. That algorithm
(Dijkstra’s) runs in O(|V|*) time on dense graphs, but substantially faster on sparse
graphs. We will give a short algorithm to solve the all-pairs problem for dense
graphs. The running time of the algorithm is O(|V|?), which is not an asymptotic
improvement over | V| iterations of Dijkstra’s algorithm but could be faster on a very
dense graph, because its loops are tighter. The algorithm also performs correctly if
there are negative edge costs, but no negative-cost cycles; Dijkstra’s algorithm fails
in this case.

Let us recall the important details of Dijkstra’s algorithm (the reader may wish
to review Section 9.3). Dijkstra’s algorithm starts at a vertex s and works in stages.
Each vertex in the graph is eventually selected as an intermediate vertex. If the
current selected vertex is v, then for each w € V, we set d,, = min(d,,d, + c,u).
This formula says that the best distance to w (from s) is either the previously known
distance to-w from s, or the result of going from s to v (optimally) and then directly
from v to w.

Dijkstra’s algorithm provides the idea for the dynamic programming algorithm:
we select the, vertices in sequential order. We will define Dy ; ; to be the weight of
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/'A'
/*

/*
/*
/*

/*
/*

/*

1*/
2%/

3%/
4%/
5%/
6%/

7*/
8%/

9*/

/*10*/

Compute Al1-Shortest Paths */

A[ ] contains the adjacency matrix */

with A[ i J[ i ] presumed to be zero */

D[ ] contains the values of the shortest path */
N is the number of vertices */

A negative cycle exists iff */

DL i J[ i ] is set to a negative value */

Actual path can be computed using Path[ ] */

A1l arrays are indexed starting at 0 */
NotAVertex is -1 %/

void
Al1Pairs( TwoDimArray A, TwoDimArray D,

{

}

TwoDimArray Path, int N )
int i, j, k;

/* Initialize D and Path */

for( i =0; i < N; i++ ) .
for( j = 0; j < N; j++ )
{

DLi1ljl=AC4i1[3 10
Pathf i J[ j ] = NotAVertex;
}

for( k = 0; k < N; k++ )
/* Consider each vertex as an 1ntermed1ate */
for( i =0; 1 < N; i+ )
for( j =0; j < N; j++ )

;’f(D[i][k]+D[k][j]<D['i][:i])

/* Update shortest path */

bLi11[31]= D[1][k]+D[k][J],

Path[ i J[ k1 =

Figure 10.53 All-pairs shortest path

the shortest path from v; to v; that uses only v1, va,. .., v as intermediates. By this
definition, Dy, ; = c;,j, where ¢; ; is @ if (v;, v;) is not an edge in the graph. Also, by
definition, Djy|;; is the shortest path from v; to v; in the graph.

As Figure 10.53 shows, when k > 0 we can write a simple formula for Dy ;.
The shortest path from v; to v; that uses only vy, v,,...,v; as intermediates is the
shortest path that either does not use v, as an mtermedlate at all, or consists of the
merging of the two paths v; — v and v, — v;, each of which uses only the first
k — 1 vertices as intermediates. This leads to the formula

Dy,;,j = min{Dg—y,,j, D1,k + Di-1,,j}
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The time requirement is once again O(|[V[?). Unlike the two previous dynamic
programming examples, this time bound has not been substantially lowered by
another approach. ’

Because the kth stage depends only on the (k — 1)th stage, it appears that only
two |V| X |V| matrices need to be maintained. However, using k as an intermediate
vertex on a path that starts or finishes with k does not improve the result unless there
is a negative cycle. Thus, only one matrix is necessary, because Dp_y,ix = Dgik and
Dg-14,; = Diu,j> which implies that none of the terms on the right change values
and need to be saved. This observation leads to the simple program in Figure 10.53,
which numbers vertices starting at zero to conform with C’s conventions.

On a complete graph, where every pair of vertices is connected (in both
directions), this algorithm is almost certain to be faster than |V| iterations of
Dijkstra’s algorithm, because the loops are so tight. Lines 1 through 4 can be
executed in parallel, as can lines 6 through 10. Thus, this algorithm seems to be well
suited for parallel computation.

Dynamic programming is a powerful algorithm design technique, which pro-
vides a starting point for a solution. It is essentially the divide and conquer paradigm
of solving simpler problems first, with the important difference being that the simpler
problems are not a clear division of the original. Because subproblems are repeatedly
solved, it is important to record their solutions in a table rather than recompute
them. In some cases, the solution can be improved (although it is certainly not al-
ways obvious and frequently difficult), and in other cases, the dynamic programming
technique is the best approach known.

In some sense, if you have seen one dynamic programming problem, you have
seen them all. More examples of dynamic programming can be found in the exercises
and references.

10.4. Randomized Algorithms

Suppose you are a professor who is giving weekly programming assignments. You
want to make sure that the students are doing their own programs or, at the very
least, understand the code they are submitting. One solution is to give a quiz on the
day that each program is due. On the other hand, these quizzes take time out of
class, so it might only be practical to do this for roughly half of the programs. Your
problem is to decide when to give the quizzes.

Of course, if the quizzes are announced in advance, that could be interpreted as
an implicit license to cheat for the 50 percent of the programs that will not get a quiz.
One could adopt the unannounced strategy of giving quizzes on alternate programs,
but students would figure out the strategy before too long. Another possibility is to
give quizzes on what seem like the important programs, but this would likely lead
to similar quiz patterns from semester to semester. Student grapevines being what
they are, this strategy would probably be worthless after a semester. :

One method that seems to eliminate these problems is to use a coin. A quiz is
made for every program (making quizzes is not nearly as time-consuming as grading
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them), and at the start of class, the professor will flip a coin to decide whether the
quiz is to be given. This way, it is impossible to know before class whether or not the
quiz will occur, and these patterns do not repeat from semester to semester. Thus,
the students will have to expect that a quiz will occur with 50 percent probability,
regardless of previous quiz patterns. The disadvantage is that it is possible that there
is no quiz for an entire semester. This is not a likely occurrence, unless the coin
is suspect. Each semester, the expected number of quizzes is half the number of
programs, and with high probability, the number of quizzes will not deviate much
from this.

This example illustrates what we call randomized algorithms. At least once
during the algorithm, a random number is used to make a decision. The running
time of the algorithm depends not only on the particular input, but also on the
random numbers that occur.

The worst-case running time of a randomized algorithm is almost always the
same as the worst-case running time of the nonrandomized algorithm. The important
difference is that a good randomized algorithm has no bad inputs, but only bad
random numbers (relative to the particular input). This may seem like only a
philosophical difference, but actually it is quite important, as the following example
shows.

Consider two variants of quicksort. Variant A uses the first element as pivot,
while variant B uses a randomly chosen element as pivot. In both cases, the worst-
‘case running time is ®(N2), because it is possible at each step that the largest
element is chosen as pivot. The difference between these worst cases is that there is a
particular input that can always be presented to variant A to cause the bad running
time. Variant A will run in ®(N?) time every single time it is given an already-sorted
list. If variant B is presented with the same input twice, it will have two different
running times, depending on what random numbers occur.

Throughout the text, in our calculations of running times, we have assumed
that all inputs are equally likely. This is not true, because nearly sorted input, for
instance, occurs much more often than is statistically expected, and this causes
problems, particularly for quicksort and binary search trees. By using a randomized
algorithm, the particular input is no longer important. The random numbers are
important, and we can get an expected running time, where we now average over
all possible random numbers instead of over all possible inputs. Using quicksort
with a random pivot gives an O(N log N )-expected-time algorithm. This means that
for any input, including already-sorted input, the running time is expected to be
O(N log N ), based on the statistics of random numbers. An expected running time
bound is somewhat stronger than an average-case bound but, of course, is weaker
than the corresponding worst-case bound. On the other hand, as we saw in the
selection problem, solutions that obtain the worst-case bound are frequently not as
practical as their average-case counterparts. Randomized algorithms usually are.

In this section we will examine two uses of randomization. First, we will see a
novel scheme for supporting the binary search tree operations in O(log N} expected
time. Once again, this means that there are no bad inputs, just bad random numbers.
From a theoretical point of view, this is not terribly exciting, since balanced search
trees achieve this bound in the worst case. Nevertheless, the use of randomization
leads to relatively simple algorithms for searching, inserting, and especially deleting.
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Our second application is a randomized algorithm to test the primality of large
numbers. No efficient polynomial-time nonrandomized algorithms are known for
this problem. The algorithm we present runs quickly but occasionally makes an
error. The probability of error can, however, be made negligibly small.

10.4.1. Random Number Generators

Since our algorithms require random numbers, we must have a method to generate
them. Actually, true randomness is virtually impossible to do on a computer, since
these numbers will depend on the algorithm, and thus cannot possibly be random.
Generally, it suffices to produce pseudorandom numbers, which are numbers that
appear to be random. Random numbers have many known statistical properties;
pseudorandom numbers satisfy most of these properties. Surprisingly, this too is
much easier said than done. .

Suppose we only need to flip a coin; thus, we must generate a 0 or 1 randomly.
One way to do this is to examine the system clock. The clock might record time.as
an integer that counts the number of seconds since some starting time. We could |
then use the lowest bit. The problem is that this does not work well if a sequence
of random numbers is needed. One second is a long time, and the clock might not
change at all while the program is running. Even if the time were recorded in units
of microseconds, if the program were running by itself the sequence of numbers that
would be generated would be far from random, since the time between calls to the
generator would be essentially identical on every program invocation. We see, then,
that what is really needed is a sequence of random numbers.* These numbers should
appear independent. If a coin is flipped and heads appears, the next coin flip should
still be equally likely to come up heads or tails.

The simplest method to generate random numbers is the linear congruential
generator, which was first described by Lehmer in 1951, Numbers x;, x3,...are
generated satisfying :

xi+1 = Ax;mod M

To start the sequence, some value of xo must be given. This value is known as the
seed. If xo = 0, then the sequence is far from random, but if A and M are correctly
chosen, then any other 1 = x¢9 < M is equally valid. If M is prime, then x; is never
0. As an example, if M = 11, A = 7;and x9 = 1, then the numbers generated are

7,5,2,3,10,4,6,9,8,1,7.5,2, ...

Notice that after M — 1 = 10 numbers, the sequence repeats. Thus, this sequence
has a period of M — 1, which is as large as possible (by the pigeonhole principle).
If M is prime, there are always choices of A that give a full period of M — 1. Some
choices of A do not; if A = 5 and xy = 1, the sequence has a short period of 5.

5,3,4,9,1,5,3,4,...

*We will use random in place of pseudorandom in the rést of this section.
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If M is chosen to be a large, 31-bit prime, the period should be significantly large for
most applications. Lehmer suggested the use of the 31-bit prime M = 23! — 1 =
2,147,483,647. For this prime, A = 48,271 is one of the many values that gives a
full-period generator. Its use has been well studied and is recommended by experts
in the field. We will see later that with random number generators, tinkering usually
means breaking, so one is well advised to stick with this formula until told otherwise.

This seems like a simple routine to implement. Generally, a global variable is
used to hold the current value in the sequence of x’s. This is the rare case where a
global variable is useful. This global variable is initialized by some routine. When
debugging a program that uses random numbers, it is probably best to set xo = 1,
so that the same random sequence occurs all the time. When the program seems to
work, either the system clock can be used or the user can be asked to input a value
for the seed.

It is also common to return a random real number in the open interval (0, 1)
(0 and 1 are not possible values); this can be done by dividing by M. From this, a
random number in any closed interval [a, B] can be computed by normalizing. This
yields the “obvious” routine in Figure 10.54 which, unfortunately, works on few
machines.

The problem with this routine is that the multiplication could overflow; although
this is not an error, it affects the result and thus the pseudorandomness. Schrage
gave a procedure in which all of the calculations can be done on a 32-bit machine
without overflow. We compute the quotient and remainder of M/A and define these
as Q and R, respectively. In our case, O = 44,488, R = 3,399, and R < Q. We
have

Figure 10.54 Random number generator that does not
work

static unsigned long Seed = 1;

#define A 48271L
_ #define M 2147483647L

double
Random( void )

{ .
Seed = ( A * Seed ) ¥ M;
return ( double ) Seed / M;
}

void
Initialize( unsigned long Initval )

{
}

Seed = Initval;
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Ax;
xi+1 = AxymodM = Ax; - M [_J

=Ax;—Ml% +Ml""] [A"'

=Ax,-—MI% +M(%l'[%])

Since x; = Q| §] + x; mod Q, we can replace the leading Ax; and obtain

(i)

ol s 2]
Since M = AQ + R, it follows that AQ — M = —R. Thus, we obtain
Xi+1 = A(x; mod Q) — l +M (l le. )

The term 8(x,~$ =|%]- [A-ﬁl ) is either 0 or 1, because both terms are integers and
their difference lies between 0 and 1. Thus, we have

Xis1 = (Q[Q +x,mon)

xi+1 = A(x;mod Q) — + M 8(x;)

]|
A quick check shows that because R < Q, all the remaining terms can be calculated
without overflow (this is one of the reasons for choosing A = 48,271). Furthermore,
8(x;) = 1 only if the remaining terms evaluate to less than zero. Thus 8(x;) does not
need to be exphcntly computed but can be determined by a simple test. This leads to
the program in Figure 10.55.

This program works as long as INT_MAX = 23! — 1. One might be tempted to
assume that all machines have a random number generator at least as good as the
one in Figure 10.55 in their standard library. Sadly, this is not true. Many libraries
have generators based on the function

xXi+1 = (Ax; + C)modZB

where B is chosen to match the number of bits in the machine’s integer, and C is odd.
These libraries also return x;, instead of a value between 0 and 1. Unfortunately,
these generators always produce values of x; that alternate between even and odd—
hardly a desirable property. Indeed, the lower k bits cycle with period 2* (at best).
Many other random number generators have much smaller cycles than the one
provided in Figure 10.55. These are not suitable for the case where long sequences
of random numbers are needed. Finally, it may seem that we can get a better random
number generator by adding a constant to the equation. For instance, it seems that

xi+1 = (48,271x; + 1) mod (2% - 1)

would somehow be even more random. This illustrates how fragile these generators
are.
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static unsigned long Seed = 1;

#define A 48271L
#define M 2147483647L
#define Q (M / A)
#define R (M % A )

double
Random( void )

{
Tong TmpSeed;

TmpSeed = A * ( Seed ¥ Q) - R * ( Seed / Q );
if( TmpSeed >= 0 )

Seed = TmpSeed;
else

Seed = TmpSeed + M;

return ( double ) Seed / M;

}
void
Initialize( unsigned long Initval )
{
Seed = Initval;
} .

Figure 10.55 Random number generator that works on
32-bit machines

[48,271(179,424,105) + 1] mod (2°! — 1) = 179,424,105
so if the seed is 179,424,105, the generator gets stuck in a cycle of period 1.

10.4.2. Skip Lists

Our first use of randomization is a data structure that supports both searching
and insertion in O(log N) expected time. As mentioned in the introduction to this
section, this means that the running time for each operation on any input sequence
has expected value O(log N ), where the expectation is based on the random number
generator. It is possible to add deletion and all the operations that involve ordering
and obtain expected time bounds that match the average time bounds of binary
search trees.

The simplest possible data structure to support searching is the linked list.
Figure 10.56 shows a simple linked list. The time to perform a search is proportional
to the number of nodes that have to be examined, which is at most N.

Figure 10.56 Simple linked list

(I EHEH T HE HE HRHZHBEIHET
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29 H

HZH * fHEEH HEH B HERH -

Figure 10.57 Linked list with pointers to two cells ahead
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Figure 10.58 Linked list with pointers to four cells ahead
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Figure 10.59 Linked list with pointers to 2/ cells ahead

Figure 10.57 shows a linked list in which every other node has an additional
pointer to the node two ahead of it in the list. Because of this, at most [N/2] + 1
nodes are examined in the worst case.

We can extend this idea and obtain Figure 10.58. Here, every fourth node has
a pointer to the node four ahead. Only [N/4} + 2 nodes are examined.

The limiting case of this argument is shown in Figure 10.59. Every 2‘th node
has a pointer to the node 2’ ahead of it. The total number of pointers has only
doubled, but now at most [log N| nodes are examined during a search. It is not hard
to see that the total time spent for a search is O(log N), because the search consists
of either advancing to a new node or dropping to a lower pointer in the same node.
Each of these steps consumes at most O(log N) total time during a search. Notlce
that the search in this data structure is essentially a binary search.

The problem with this data structure is that it is much too rigid to allow
efficient insertion. The key to making this data structure usable is to relax the
structure conditions slightly. We define a level k node to be a node that has k
pointers. As Figure 10.59 shows, the ith pointer in any level k node (k¢ = ) points
to the next node with at least 7 levels. This is an easy property to maintain; however,
Figure 10.59 shows a more restrictive property than this. We thus drop the restriction
that the ith pointer points to the node 2! ahead, and we replace it with the less
restrictive condition above.

When it comes time to insert a new element, we allocate a new node for it. We
must at this point decide what level the node should be. Examining Figure 10.59,
we find that roughly half the nodes are level 1 nodes, roughly a quarter are level
2, and, in general, approximately 1/2° nodes are level i. We choose the level of the
node randomly, in accordance with this probability distribution. The easiest way to
do this is to flip a coin until a head occurs and use the total number of flips as the
node level. Figure 10.60 shows a typical skip list.
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_'L_i-

13

13 -
29

0H M7 Lo H HEHT -

-

4 2

[~ -]
y 1o !
1
1
[
N

Figure 10.60 A skip list

Given this, the skip list algorithms are simple to describe. To perform a Find,
we start at the highest pointer at the header. We traverse along this level until we
find that the next node is larger than the one we are looking for (or NULL). When
this occurs, we go to the next lower level and continue the strategy. When progress
is stopped at level 1, either we are in front of the node we are looking for, or it is
not in the list. To perform an Insert, we proceed as in a Find, and keep track of each
point where we switch to a lower level. The new node, whose level is determined
randomly, is then spliced into the list. This operation is shown in Figure 10.61.

A cursory analysis shows that since the expected number of nodes at each
level is unchanged from the original (nonrandomized) algorithm, the total amount
of work that is expected to be performed traversing to nodes on the same level is
unchanged. This tells us that these operations have O(log N) expected costs. Of
course, a more formal proof is required, but it is not much different from this.

Skip lists are similar to hash tables, in that they require an estimate of the
number of elements that will be in the list (so that the number of levels can be
determined). If an estimate is not available, we can assume a large number or use a
technique similar to rehashing. Experiments have shown that skip lists are as efficient
as many balanced search tree implementations and are certainly much simpler to
implement in many languages.

10.4.3. Primality Testing

In this section we examine the problem of determining whether or not a large
number is prime. As was mentioned at the end of Chapter 2, some cryptography
schemes depend on the difficulty of factoring a large, 200-digit number into two

Figure 10.61 Before and after an insertion
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100-digit primes. In order to implement this scheme, we need a method of generating
these two primes. The problem is of major theoretical interest, because nobody now
knows how to test whether a d-digit number N is prime in time polynomial in d.
For instance, the obvious method of testing for the divisibility by odd numbers from
3to /N requires roughly 3 VN divisions, which is about 24”2, On the other hand,
this problem is not thought to be NP-complete; thus, it is one of the few problems
on the fringe—its complexity is unknown at the time of this writing.

In this chapter, we will give a polynomial-time algorithm that can test for
primality. If the algorithm declares that the number is not prime, we can be certain
that the number is not prime. If the algorithm declares that the number is prime,
then, with high probability but not 100 percent certainty, the number is prime. The
error probability does not depend on the particular number that is being tested but
instead depends on random choices made by the algorithm. Thus, this algorithm
occasionally makes a mistake, but we will see that the error ratio can be made
arbitrarily negligible. 4

The key to the algorithm is a well-known theorem due to Fermat.

THEOREM 10.10. ‘
Fermat’s Lesser Theorem: If P is prime, and 0 < A < P, then AF~1 = 1(mod P).

PROOF: .
A proof of this theorem can be found in any textbook on number theory.

For instance, since 67 is prime, 266 = 1(mod 67). This suggests an algorithm
to test whether a number N is prime. Merely check whether 2N~1 = 1(mod N). If
2N=12 1(mod N), then we can be certain that N is not prime. On the other hand,
if the equality holds, then N is probably prime. For instance, the smallest N that
satisfies 2N~! = 1(mod N ) but is not prime is N = 341.

This algorithm will occasionally make errors, but the problem is that it will
always make the same errors. Put another way, there is a fixed set of N for which
it does not work. We can attempt to randomize the algorithm as follows: Pick
1 <A <N —1atrandom. If AN~! = 1(mod N, declare that N is probably prime,
otherwise declare that N is definitely not prime. If N = 341, and A = 3, we find
that 3340 = 56(mod 341). Thus, if the algorithm happens to choose A = 3, it will
get the correct answer for N = 341.

Although this seems to work, there are numbers that fool even this algorithm for
most choices of A. One such set of numbers is known as the Carmichael numbers.
These are not prime but satisfy AN~! = 1(modN) for all 0 < A < N that are
relatively prime to N. The smallest such number is 561. Thus, we need an additional
test to improve the chances of not making an error.

In Chapter 6, we proved a theorem related to quadratic probing. A special case
of this theorem is the following:

THEOREM 10.11.

If P is prime and 0 < X < P, the only solutions to X* = 1{mod P) are X =
L,P-1.
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FROOF:

X2 = 1(mod P) implies that X2 — 1 = O(mod P). This implies (X —1)}(X +1) =
0(mod P). Since P is prime, 0 < X < P, and P must divide either (X — 1) or
(X + 1), the theorem follows.

Therefore, if at any point in the computation of AN~!(mod N) we discover a
violation of this theorem, we can conclude that N is definitely not prime. If we use
Power, from Section 2.4.4, we see that there will be several opportunities to apply
this test. We modify this routine to perform operations mod N, and apply the test of
Theorem 10.11. This strategy is implemented in Figure 10.62.

Recall that if Witness returns anything but 1, it has proven that N cannot be
prime. The proof is nonconstructive, because it gives no method of actually finding
the factors. It has been shown that for any (sufficiently large) N, at most (N — 9)/4
values of A fool this algorithm. Thus, if A is chosen at random, and the algorithm
answers that N is (probably) prime, then the algorithm is correct at least 75 percent
of the time. Suppose Wztness is run 50 times. The probability that the algorithm
is fooled once is at most 1. Thus, the probability that 50 independent random
trials fool the algorithm is never more than 1/4%0.= 2-190. This js actually a very
conservative estimate, which holds for only a few chmces of N. Even so, one is more
likely to see a hardware error than an mcorrect claun of pnmallty e

10.5. Backtracking Algorithms

The last algorithm de31gn technique we wsll exarmne is backtrackmg In many cases,
a backtracking algorithm amounts to a clever implementation of exhaustive: seatrch,
with generally unfavorable performance This is not always the case, however, and
even so, in some cases, the savings over a brute force exhaustive search ‘can be
significant. Performance is, of course, relative: an O(N2). algonthm for sorting is
pretty bad, but an O(N ) algorithm for the traveiing salesman (or any NP-complete)
problem would be a landmark result.

A pracncal example of a backtracking algorithm is the problem of arranging
furniture in a new house. There are many possibilities to try, but typically only a
few are actually considered. Starting with no arrangement, each piece of furniture
is placed in some part of the room. If all the furniture is placed and the owner
is happy, then the algorithm terminates. If we reach a point where all subsequent
placement of furniture is undesirable, we have to undo the last step and try an
alternative. Of course, this might force another undo, and so forth. If we find that
we undo all possible first steps, then there is no placement of furniture that is
satisfactory. Otherwise, we eventually terminate with a satisfactory arrangement.
Notice that although this algorithm is essentially brute force, it does not try all
possibilities directly. For instance, arrangements that consider placing the sofa in the
kitchen are never tried. Many other bad arrangements are discarded early, because
an undesirable subset of the arrangement is detected. The elimination of a large
group of possibilities in one step is known as pruning.

We will see two examples of backtracking algorithms. The first is a problem in
computational geometry. Our second example shows how computers select moves
in games, such as chess and checkers.
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/* If Witness does not return 1, N is definitely */

/* composite. Do this by computing C A * i) mod N and */
/* looking for non-trivial square roots of 1 along the */
/* way. We are assuming very large numbers, so this */

/* is pseudocode */

HugeInt
Witness( HugeInt A, HugelInt i, HugeInt N )

{
Hugelnt X, Y;

if(i==0)
return 1;

X = Witness(C A, i / 2, N);
if( X ==0) /* If N is recursively composite, stop */
return 0;

/* N is not prime if we find a non-trivial root of 1 */
Y=(X*X)%N;
if(Y==1&X!=18& X !=N-1)

return O;

if(i%x21=0)
Y=(CA*Y)%N;

return Y;

}

/* IsPrime: Test if N >= 3 is prime using one value */
/* of A, Repeat this procedure as many times as needed */
/* for desired error rate */

int
IsPrime( HugeInt N )
{

}

return Witness( RandInt( 2, N -2 ), N -1, N) == 1;

Figure 10.62 A probabilistic primality testing algo-

rithm
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10.5.1. The Turnpike Reconstruction Problem

Suppose we are given N points, p1, p2,..., PN, located on the x-axis. x; is the x
coordinate of p;. Let us further assume that x; = 0 and the points are given from left
to right. These N points determine N (N — 1)/2 (not necessarily unique) distances d1,
da, ..., dn between every pair of points of the form |x; — x;| (i # f). It is clear that
if we are given the set of points, it is easy to construct the set of distances in O(N %)
time. This set will not be sorted, but if we are willing to settle for an O(N2logN)
time bound, the distances can be sorted, too. The turnpike reconstruction problem
is to reconstruct a point set from the distances. This finds applications in physics and
molecular biology (see the references for pointers to more specific information). The
name derives from the analogy of points to turnpike exits on East Coast highways.
Just as factoring seems harder than multiplication, the reconstruction problem seems
harder than the construction problem. Nobody has been able to give an algorithm
that is guaranteed to work in polynomial time. The algorithm that we will present
generally runs in O(N2 log N) but can take exponential time in the worst case.

Of course, given one solution to the problem, an infinite number of others can
be constructed by adding an offset to all the points. This is why we insist that the
first point is anchored at 0 and that the point set that constitutes a solution is output
in nondecreasing order.

Let D be the set of distances, and assume that [D| = M = N(N — 1)/2. As an
example, suppose that

D =1{1,2,2,2,3,3,3,4,5,5,5,6,7,8,10}

Since |D| = 15, we know that N = 6. We start the algorithm by setting x; = 0.
Clearly, x¢ = 10, since 10 is the largest element in D. We remove 10 from D. The
points that we have placed and the remaining distances are as shown in the following
figure.
'r -
X1 = O X¢g =
D ={1,2,2,2,3,3,3,4,5,5,5,6,7,8}

The largest remaining distance is 8, which means that either x, = 2 or x5 = 8.
By symmetry, we can conclude that the choice is unimportant, since either both
choices lead to solutions (which are mirror images of each other), or neither do,
so we can set x5 = 8 without affecting the solution. We then remove the distances
x¢ —xs = 2 and x5 — x = 8 from D, obtaining

10

! ' | |

| | |

x1=0 Xx5=8 xg=
D ={1:2:2,3,3a374a535a5a637}

The next step is not obvious. Since 7 is the largest value in D, either x4 = 7
or x; = 3. If x4 = 7, then the distances x¢ — 7 = 3 and x5 — 7 = 1 must also be
present in D. A quick check shows that indeed they are. On the other hand, if we
setx = 3, then 3 —x; = 3 and x5 — 3 = 5 must be present in D. These distances
are also in D, so we have no guidance on which choice to make. Thus, we try one

10
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and see if it leads to a solution. If it turns out that it does not, we can come back
and try the other. Trying the first choice, we set x4 = 7, which leaves

| [
1 |
0 . 'x4=7x5=8 X6 =
D ={2,2,3,3,4,5,5,5,6}

At this point, we have x; = 0, x4 = 7, x5 = 8, and x¢ = 10. Now the largest
distance is 6, so either x3 = 6 or x, = 4. Butif x3 = 6, then x4 — x3 = 1, which is
impossible, since 1 is no longer in D. On the other hand, if x = 4 thenx; —xp = 4,
and x5 — x, = 4. This is also impossible, since 4 only appears once in D. Thus, this
line of reasoning leaves no solution, so we backtrack.

Since x4 = 7 failed to produce a solution, we try x, = 3. If this also fails, we
give up and report no solution. We now have

|
|

X1 10

]
|
8 x¢ =10

|| —

0 x =3 x5
D ={1,2,2,3,3,4,5,5,6}

Once again, we have to choose between x4 = 6 and x3 = 4. x3 =4 is
impossible, because D only has one occurrence of 4, and two would be implied by
this choice. x4 = 6 is possible, so we obtain

X1

|
I
x1 =0 X2

|| -
=T

3 x4=.6 Xs
D ={1,23,575}

The only remaining choice is to assign x3 = 5; this works because it leaves D empty,
and so we have a solution.

] ] ] ]

| | L | |
=0 x2 =3 x3—5x4=6 x5 =

D ={}

Figure 10.63 shows a decision tree representing the actions taken to arrive at the
solution. Instead of labeling the branches, we have placed the labels in the branches’
destination nodes. A node with an asterisk indicates that the points chosen are
inconsistent with the given distances; nodes with two asterisks have only impossible
nodes as children, and thus represent an incorrect path.

The pseudocode to implement this algorithm is mostly straightforward. The
driving routine, Turnpike, is shown in Figure 10.64. It receives the point array X
(which need not be initialized), the distance array D, and N.* If a solution is discov-
ered, then ¢rue will be returned, the answer will be placed in X, and D will be empty.
Otherwise, false will be returned, X will be undefined, and the distance array D

X1

"We have used one-letter variable names, which is generally poor style, for consxstency with the worked
example. We also, for simplicity, do not give the type of variables.
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Figure 10.63 Decision tree for the worked turnpike reconstruction example

int
Turnpike( int X[ ], DistSet D, int N )
{
/* 1%/ X[1] = 0;
/* 2%/ X{ N J = DeleteMax( D );
/* 3%/ X[ N - 1] = DeleteMax( D );
/* 4%/ iFCXEN] -X[IN-1]€ D)
{
/* 5%/ Remove( X[ N ] - X[ N-117], D);
/* 6%/ return Place( X, D, N, 2, N - 2 );
} . .
else
/¥ 7%/ return False;
}

Figure 10.64 Turnpike reconstruction algorithm: driver )
routine (pseudocode)

will be untouched. The routine sets x1, xN-1, and x, as described above, alters D,
and calls the backtracking algorithm Place to place the other points. We presume
that a check has already been made to ensure that |D| = N(N ~ 1)/2.

The more difficult part is the backtracking algorithm, which is shown in Figure
10.65. Like most backtracking algorithms, the most convenient implementation
is recursive. We pass the same arguments plus the boundaries Left and Right;
XLefts - - -» XRight are the x coordinates of points that we are trying tq place. If D is
empty (or Left > Right), then a solution has been found, and we can return. Other-
wise, we first try to place Xgigps = Dmax- If all the appropriate distances are present (in
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/'k
/*

/*
/'k
/'k

/'k

/*

1*/
2%/
3*/

4%/

5%/
6%/
7*/
8%/

9*/

/*10*/
/*11*/

/*12%/
/*13%/

/¥14%/
/*15%/
/*16%*/
/¥17*/

/*18*/
/*19*/
/*20%/

/*21*/

/* Backtracking algorithm to place the points */
/* X[ Left ... Right ] */

/* X[ 1 ... Left - 17 and X[ Right + 1 ... N ] */
/* are already tentatively placed */

/* If Place returns True, */

/* then X[ Left ... Right ] will have values */

int
Place( int X[ ], DistSet D, int N, int Left, int Right )

int DMax, Found = False;

if( D is empty )
return True;
DMax = FindMax( D );

/* Check +if setting X[ Right ] = DMax is feasible */
if(| XL j ] -DMax | € D
for al1 1 = j < Left and Right < j = N)

{
X[ Right ] = DMax; /* Try X[ Right ] = DMax */
for(1 = j < Left, Right < j = N)
Delete( | X[ j ] - DMax |, D );
Found = Place( X, D, N, Left, Right - 1 );
if( !Found ) /* Backtrack */
for(1 = j < Left, Right <j = N ) /* Undo deletion */
Insert( | X[ j ] - DMax |, D );
}

/* If first attempt failed, try to see if setting */
/¥ X[ Left ] = X[ N ] - DMax is feasible */
if( !Found & ( | XIN] -DMax - X[ j]1 | € D
for al1 1 = j < Left and Right <j = N) )
{

X[ Left ] = X[ N ] - DMax; /* Same logic as before */
for(1 = j < Left, Right <j = N)

Delete( | XL N]J -DMax - X[ j 1|, D);
Found = Place( X, D, N, Left + 1, Right );

if( !Found ) /* Backtrack */
for( 1 = j < Left, Right <j = N ) /* Undo */
Insert( | X[ NJ -DMax - X[ j 11, D);
}
return Found;

}

Figure 10.65 Turnpike reconstruction algorithm: back-

tracking steps (pseudocode)
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the correct quantity), then we tentatively place this point, remove these distances,
and try to fill from Left to Right — 1. If the distances are not present, or the attempt
to fill Left to Right — 1 fails, then we try setting X1 = XN — dmax, Using a similar
strategy. If this does not work, then there is no solution; otherwise a solution has
been found, and this information is eventually passed back to Turnpike by the return
statement and X array.

The analysis of the algorithm involves two factors. Suppose lines 9 through
11 and 18 through 20 are never executed. We can maintain D as a balanced bi-
nary search (or splay) tree (this would require a code modification, of course).
If we never backtrack, there are at most O(N?) operations involving D, such
as deletion and the Finds implied at lines 4 and 12 to 13, This claim is obvious for
deletions, since D has O(N?) elements and no element is ever reinserted. Each call
to Place uses at most 2N Finds, and since Place never backtracks in this analysis,
there can be at most 2N 2 Finds. Thus, if there is no backtracking, the running time
is O(N2logN). ,

Of course, backtracking happens, and if it happens repeatedly, then the perfor-
mance of the algorithm is affected. This can be forced to happen by construction of a
pathological case. Experiments have shown that if the points have integer coordinates
distributed uniformly and randomly from [0, Dpax], where Dmayx = @(N2), then,
almost certainly, at most one backtrack is performed during the entire algorithm,

10.5.2. Games

As our last application, we will consider the strategy that a computer might use to
play a strategic game, such as checkers or chess. We will use, as an example, the
much simpler game of tic-tac-toe, because it makes the points easier to illustrate.

Tic-tac-toe is a draw if both sides play optimally. By performing a careful
case-by-case analysis, it is not a difficult matter to construct an algorithm that never
loses and always wins when presented the opportunity. This can be done, because
certain positions are known traps and can be handled by a_lookup table. Other
strategies, such as taking the center square when it is available, make the analysis
simpler. If this is done, then by using a table we can always choose a move based
only on the current position. Of course, this strategy requires the programmer, and
not the computer, to do most of the thinking.

Minimax Strategy

The more general strategy is to use an evaluation function to quantify the “goodness”
of a position. A position that is a win for a computer might get the value of +1;
a draw could get 0; and a position that the computer has lost would get a —1. A
position for which this assignment can be determined by examining the board is
known as a terminal position.

If a position is not terminal, the value of the position is determined by recursively
assuming optimal play by both sides. This is known as a minimax strategy, because
one player (the human) is trying to minimize the value of the position, while the
other player (the computer) is trying to maximize it.
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A successor position of P is any position P, that is reachable from P by playing
one move. If the computer is to move when in some position P, it recursively
evaluates the value of all the successor positions. The computer chooses the move
with the largest value; this is the value of P. To evaluate any successor position Ps,
all of P,’s successors are recursively evaluated, and the smallest value is chosen. This
smallest value represents the most favorable reply for the human player.

The code in Figure 10.66 makes the computer’s strategy more clear. Lines 1
through 4 evaluate immediate wins or draws. If neither of these cases apply, then
the position is nonterminal. Recalling that Value should contain the maximum of all
possible successor positions, line 5 initializes it to the smallest possible value, and
the loop in lines 6 through 13 searches for improvements. Each successor position
is recursively evaluated in turn by lines 8 through 10. This is recursive, because, as
we will see, the procedure FindHumanMove calls FindCompMove. If the human’s
response to a move leaves thé computer with a more favorable position than that
obtained with the previously best computer move, then the Value and BestMove
are updated. Figure 10.67 shows the procedure for the human’s move selection.
The logic is virtually identical, except that the human player chooses the move that
leads to the lowest-valued position. Indeed, it is not difficult to combine these two
procediires into one by passing an extra variable, which indicates whose tiirn it is
to move. This does make the code somewhat less readable, so we have stayed with
separate routines.

Since these routines must pass back both the value of the position and the best
move, we pass the address of two variables that will get this information, by using
pointers. The last two parameters now answer the questions “WHERE?” instead of
“WHAT?” . .

As an example, in Figure 10.66, BestMove contains the address where the best
move can be placed. FindCompMove can examine or alter the data at that address
by accessing *BestMove. Line 9 shows how the calling routine should behave. Since
the caller has two integers prepared to store the data, and FindHumanMove only
wants the addresses of these two integers, the address operator (&) is used.

If the & operator is not used at line 9, and both Dc and Response are zero
{(which would be typical of uninitialized data), then FindHumanMove will try to
place its best move and position value in memory location zero. Of course, this is
not what was intended, and will almost certainly result in a program crash (try it!).
This is the most common error when using the scanf family of library routines.

We leave supporting routines as an exercise. The most costly computation is the
case where the computer is asked to pick the opening move. Since at this stage the
game is a forced draw, the computer selects square 1.* A total of 97,162 positions
were examined, and the calculation took a few seconds. No attempt was made
to optimize the. code. When the computer moves second, the number of positions
examined is 5,185 if the human selects the center square, 9,761 when a corner
square is selected, and 13,233 when a noncorner edge square is selected.

L]

"We numbered the squares starting from the top left and moving right. However, this is only important
for the supporting routines,
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/*
/'k

/'A\'
/*
/*
/*
/'k

/*
/*

1*/
2%/

3%/
ax/
5%/
6*/
7%/

8%/
9%/

/*10%/

/*11*/

[¥12%/
/*¥13%/

/* Recursive procedure to find best move for computer */

/* BestMove points to a number from 1 to 9 indicating square */
/* Possible evaluations satisfy ComplLoss < Draw < CompWin */
/* Complementary procedure FindHumanMove is Figure 10.67 */

/* Board is an array and thus can be changed by Place */

void

FindCompMove( BoardType Board, int *BestMove, int *Value )

{

}

int Dc,'i; Response; /* Dc means don't care */ -

if( FullBoard( Board ) )
*Value =

else

Draw;

if( ImmediatéCompWin( Board, BestMove ) )
*Value =

else

*Value
for( 1

{

CompWin;

ComplLoss; ‘
1; i <= 9; i++ ) /* Try each square */

if( IsEmpty( Board, i ) )
{

Place( Board, i, Comp );
. FindHumanMove( Board, &Dc, &Response );
Unplace( Board, i ); /* Restore Board */

if( Response > *Value )

{

/* Update best move */
*Value = Response;
*BestMove = 1i;

Figure 10.66 Minimax tic-tac-toe algorithm: computer

selection
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void
FindHumanMove( BoardType Board, int *BestMove, int *Value ),
{
int Dc, i, Response; /* Dc means don't care */
/* 1%/ if( FullBoard( Board ) )
/* 2%/ *Value = Draw;
else
/* 3%/ if( ImmediateHumanWin( Board, BestMove ) )
/* 4%/ *Value = Comploss;
else
, {
/* 5%/ *Value = CompWin;
/* 6%/ for( i = 1; 1 <= 9; i4++ ) /* Try each square */
{
/* 7%/ if( IsEmpty( Board, i ) )
{
/* 8%/ Place( Board, i, Human );
/* 9*/ FindCompMove( Board, &Dc, &Response );
/*10%/ Unplace( Board, i ); /* Restore board */
/*11*/ if( Response < *Value )
{
/* Update best move */
/*12%/ *Value = Response;
/*13*/ *BestMove = 1i;
}
}
}
}
}
Figure 10.67 Minimax tic-tac-toe algorithm: human
selection

For more complex games, such as checkers and chess, it is obviously infeasible
to search all the way to the terminal nodes.” In this case, we have to stop the search
after a certain depth of recursion is reached. The nodes where the recursion is stopped
become terminal nodes. These terminal nodes are evaluated with a function that
estimates the value of the position. For instance, in a chess program, the evaluation
function measures such variables as the relative amount and strength of pieces
and positional factors. The evaluation function is crucial for success, because the
computer’s move selection is based on maximizing this function. The best computer
chess programs have surprisingly sophisticated evaluation functions.

*It is estimated that if this search were conducted for chess, at least 10'® positons would be examined
for the first move. Even if the improvements described later in this section were incorporated, this number
could not be reduced to a practical level.
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Figure 10.68 Two searches that arrive at identical position

Nevertheless, for computer chess, the single most important factor seems to
be number of moves of look-ahead the program is capable of. This is sometimes
known as ply; it is equal to the depth of the recursion. To implement this, an extra
parameter is given to the search routines.

The basic method to increase the look-ahead factor in game programs is to come
up with methods that evaluate fewer nodes without losing any information. One
method which we have already seen is to use a table to keep track of all positions
that have been evaluated. For instance, in the course of searching for the first move,
the program will examine the positions in Figure 10.68. If the values of the positions
are saved, the second occurrence of a position need not be recomputed; it essentially
becomes a terminal position. The data structure that records this is known as a
transposition table; it is almost always implemented by hashing. In many cases, this
can save considerable computation. For instance, in a chess endgame, where there
are relatively few pieces, the time savings can allow a search to go several levels
deeper.

a—f3 Pruning

Probably the most significant improvement one can obtain in general is known as
a—p pruning. Figure 10.69 shows the trace of the recursive calls used to evaluate
some hypothetical position in a hypothetical game. This is commonly referred to as
a game tree. (We have avoided the use of this term until now, because it is somewhat
misleading: no tree is actually constructed by the algorithm. The game tree is just an
abstract concept.) The value of the game tree is 44.

Figure 10.70 shows the evaluation of the same game tree, with several unevalu-
ated nodes. Almost half of the terminal nodes have not been checked. We show that
evaluating them would not change the value at the root.

First, consider node D. Figure 10.71 shows the information that has been
gathered when it is time to evaluate D. At this point, we are still in FindHumanMove
and are contemplating a call to FindCompMove on D. However, we already
know that FindHumanMove will return at most 40, since it is a #in node. On
the other hand, its max node parent has already found a sequence that guarantees 44.
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Figure 10.69 A hypothetical game tree ‘ "

Figure 10.70 A pruned game tree

Nothing that D does can possibly increase this value. Therefore, B does not need to
be evaluated. This pruning of the tree is known as a pruning. An identical situation
occurs at node B. To implement « pruning, FindCompMove passés its tentative
maximum (a) to FindHumanMove. If the tentative minimum of FindHumanMove
falls below this value, then FindHumanMove returns immediately.

A similar thing happens at nodes A and C. This time, we are in the middle
of a FindCompMove and are about to make a call to FindHumanMove to evaluate C.

Figure 10.71 The node marked ? is unimportant
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Figure 10.72 The node marked ? is unimportant

Figure 10.72 shows the situation that is encountered at node C. However, the
FindHumanMove, at the min level, which has called FindCompMove, has already
determined that it can force a value of at most 44 (recall that low values are good for
the human side). Since Find CompMouve has a tentative maximum of 68, nothing that
C does will affect the result at the min level. Therefore, C should not be evaluated.
This type of pruning is known as B pruning; it is the symmetric version of a pruning.
When both techniques are combined, we have a—$ pruning.

Implementing a—B pruning requires surprisingly little code. Figure 10.73 shows
half of the a—B pruning scheme (minus type declarations); you should have no
trouble coding the other half.

To take full advantage of @—f pruning, game programs usually try to apply
the evaluation function to nonterminal nodes in an attempt to place the best moves
early in the search. The result is even more pruning than one would expect from a
random ordering of the nodes. Other techniques, such as searching deeper in more
active lines of play, are also employed.

In practice, @—fB pruning limits the searching to only O( VN) nodes, where N
is the size of the full game tree. This is a huge saving and means that searches using
a~f pruning can go twice as deep as compared to an unpruned tree. Our tic-tac-toe
example is not ideal, because there are so many identical values, but even so, the
initial search of 97,162 nodes is reduced to 4,493 nodes. (These counts include
nonterminal nodes).

In many games, computers are among the best players in the world. The
techniques used are very interesting, and can be applied to more serious problems.
More details can be found in the references.

Summary

This chapter illustrates five of the most common techniques found in algorithm
design. When confronted with a problem, it is worthwhile to see if any of these
methods apply. A proper choice of algorithm, combined with judicious use of data
structures, can often lead quickly to efficient solutions.
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/*

/*
/*

1*/
2%/

3%/
4%/
5%/
6*/
7%/

8*/
9%/

/*10*/

/*11*/

/*12%/
/*13%/

/* Same as before, but perform alpha-beta pruning */
/* The main routine should make the call with */
/* Alpha = CompLoss and Beta = CompWin */

void

FindCompMove( BoardType Board, int *BestMove, int *Value,

{

}

int Alpha, int Beta )

int Dc, i, Response; /* Dc means don't care */

if( FullBoard( Board ) )
*Value = Draw;

else

if( ImmediateCompWin( Board, BestMove ) )
*Value = CompWin;

else

*Value
for( i

{

if(
{

Alpha;
1; i <= 9 && *Value < Beta; i++ )

IsEmpty( Board, i ) )

Place( Board, i, Comp );

FindHumanMove( Board, &c, &Response,
*Value, Beta );

Unplace( Board, i ); /* Restore board */

if( Response > *Value )
/* Update best move */

*Value = Response;
*BestMove = i;

Figure 10.73 Minimax tic-tac-toe algorithm with a — g
pruning: computer selection
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EXERCISES

Exercises

10.1

10.2

Show that the greedy algorithm to minimize the mean completion time for
multiprocessor job scheduling works.

The input is a set of jobs j1, j2, - . -, jN, €ach of which takes one time unit to
complete. Each job j; earns d; dollars if it is completed by the time limit ¢;,
but no money if completed after the time limit.

a. Give an O(N?) greedy algorithm to solve the problem.

**b. Modify your algorithm to obtain an O{N log N) time bound. Hint: The

10.3

10.4

10.5

10.6

10.7

*10.8

10.9

10.10

10.11

10.12
10.13
*10.14

*10.15

10.16

time bound is due entirely to sorting the jobs by money. The rest of the
algorithm can be implemented, using the disjoint set data structure, in
o(N logN).
A file contains only colons, spaces, newlines, commas, and digits in the
following frequency: colon (100), space (605), newline (100), comma (705),
0 (431), 1 (242), 2 (176), 3 (59), 4 (185), 5 (250), 6 (174), 7 (199), 8 (205),
9 (217). Construct the Huffman code.
Part of the encoded file must be a header indicating the Huffman code. Give
a method for constructing the header of size at most O(N) (in addition to
the symbols), where N is the number of symbols.
Complete the proof that Huffman’s algorithm generates an optimal prefix
code.
Show that if the symbols are sorted by frequency, Huffman’s algorithm can
be implemented in linear time.

Write a program to implement file compression (and uncompressmn) using
Huffman’s algorithm,

Show that any on-line bin-packing algorithm can be forced to use at least 3 5
the optimal nurnber of bins, by cons:denng the following sequence of items:
N items of size 1 — 2¢, N items of size 3 + €, N items of size i +e.

Explain how to implement first fit and best fit in O(N log N} time.

Show the operation of all of the bin-packing strategies discussed in Section
10.1.3 on the input 0.42, 0.25, 0.27, 0.07, 0.72, 0.86, 0.09, 0.44, 0.50, 0.68,
0.73,0.31, 0.78, 0.17, 0.79, 0.37, 0.73, 0.23, 0.30.

Write a program that compares the performance (both in time and number
of bins used) of the various bin packing heuristics.

Prove Theorem 10.7.
Prove Theorem 10.8.

N points are placed in a unit square. Show that the distance between the
closest pair is O(N ~112),

Argue that for the closest-points algorithm, the average number of points in
the strip is O(/N). Hint: Use the result of the previous exercise.

Write a program to implement the closest-pair algorithm.
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10.17

10.18

10.19

10.20

*10.21

10.22

10.23

10.24

What is the asymptotic running time of quickselect, using a median-of-
median-of-three partitioning strategy?
Show that quickselect with median-of-median-of-seven partitioning is linear.
Why is median-of-median-of-seven partitioning not used in the proof?
Implement the quickselect algorithm in Chapter 6, quickselect using median-
of-median-of-five partitioning, and the sampling algorithm at the end of
Section 10.2.3. Compare the running times.
Much of the information used to compute the median-of-median-of-five is
thrown away. Show how the number of comparisons can be reduced by more
careful use of the information.
Complete the analysis of the sampling algorithm described at the end of
Section 10.2.3, and explain how the values of & and s are chosen.
Show how the recursive multiplication algorithm computes XY, where
X = 1234 and Y = 4321. Include all recursive computations.
Show how to multiply two complex numbers X = a+ bi and Y = ¢ + di
using only three multiplications.
a. Show that

XiYr+XrYL = (Xp + Xp)YL + YR)— X1 YL — XgYR

b. This gives an O(N %) algorithm to multiply N-bit numbers. Compare
this method to the solution in the text.

10.25*a. Show how to multiply two numbers by solving five problems that are

roughly one-third of the original size.

**b. Generalize this problem to obtain an O(N *¢) algorithm for any constant

10.26

10.27

10.28

10.29

10.30

€ > 0.
c. Is the algorithm in part (b) better than O(N log N )?

Why is it important that Strassen’s algorithm does not use commutativity in
the multiplication of 2 X 2 matrices?

Two 70 X 70 matrices can be multiplied using 143,640 multiplications. Show
how this can be used to improve the bound given by Strassen’s algorithm.

What is the optimal way to compute A;A;A3A4A5A¢, where the dimensions
of the matrices are: A; : 10 X 20, A; : 20 X 1, A3:1 X 40, Ay :40 X 5,
As: 5% 30,A,:30X15?

Show that none of the following greedy algorithms for chained matrix
multiplication work. At each step

a. Compute the cheapest multiplication.

b. Compute the most expensive multiplication.

c. Compute the multiplication between the two matrices M; and M; 1, such
that the number of columns in M; is minimized (breaking ties by one of
the rules above).

Write a program to compute the best ordering of matrix multiplication.
Include the routine to print out the actual ordering.
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10.34

10.35
10.36
10.37

10.38
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Show the optimal binary search tree for the following words, where the
frequency of occurrence is in parentheses: 4 (0.18), and (0.19), I (0.23), it
(0.21), or (0.19).

Extend the optimal binary search tree algorithm to allow for unsuccessful
searches. In this case, g;, for 1 = j < N, is the probability that a search is
performed for any word W satisfying w; < W < wj+1. go is the probability
of performing a search for W < w1, and gx is the probability of performing
a search for W > wy . Notice that Zf}’:l i + Z;q:o qgj = 1.

Suppose C;; = 0 and that otherwise

Ci,i = W,',,' 4 'min.(c,',k_] + Ck”')
i<ksj

IA

Suppose that W satisfies the quadrangle inequality, namely, for all i = i’
=i

Wi,j + Wi',i' = Wi';i + W“”‘f
Suppose further, that W is monotone: If i = i’ and j = j', then W;; =
W,‘r,,".
a. Prove that C satisfies the quadrangle inequality.

b. Let R;; be the largest k that achieves the minimum C;;_; + Cp ;. (That
is, in case of ties, choose the largest k). Prove that

Ri; = Rij+1 = Rit1j+1

[e)

. Show that R is nondecreasing along each row and column.

(a9

. Use this to show that all entries in C can be computed in O(N?) time.

. Which of the dynamic programming algorithms can be solved in O(N?2)
using these techniques?

o

Write a routine to reconstruct the shortest paths from the algorithm in Section
10.3.4.

Examine the random number generator on your system. How random is it?
Write the routines to perform insertion, deletion, and searching in skip lists.
Give a formal proof that the expected time for the skip list operations is
Oflog N). ‘

Figure 10.74 shows a routine to flip a coin, assuming that rand returns
an integer (which is prevalent in many systems). What is the expected
performance of the skip list algorithms if the random number generator uses

a modulus of the form M = 2F (which is unfortunately prevalent on many
systems)?

a. Use the exponentiation algorithm to prove that 2340 = 1(mod 341).

b. Show how the randomized primality test works for N = 561 with several
choices of A.

Implement the turnpike reconstruction algorithm.
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enum CoinSide { Heads, Tails };
typedef enum CoinSide CoinSide;

CoinSide
Flip( void )
{

ifC Crand( ) %$2 ) = 0))
return Heads;

else
return Tails;

}

Figure 10.74 Questionable coin flipper

10.41 Two point sets are homometric if they yield the same distance set and are not

10.42

10.43
10.44

10.45
10.46

*10.47

rotations of each other. The following distance set gives two distinct point
sets: {1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 16, 17 }. Find the two point sets.
Extend the reconstruction algorithm to find all homometric point sets given
a distance set.

Show the result of a—B pruning of the tree in Figure 10.75.

a. Does the code in Figure 10.73 implement & pruning or 8 pruning?
b. Implement the complementary routine.

Write the remaining procedures for tic-tac-toe.

The one-dimensional circle packing problem is as follows: You have N circles
of radii 71, 72,...,7N. These circles are packed in a box such that each circle is
tangent to the bottom of the box, and are arranged in the original order. The
problem is to find the width of the minimum-sized box. Figure 10.76 shows
an example with circles of radii 2, 1, 2 respectively. The minimum-sized box
has width 4 + 4./2.

Suppose that the edges in an undirected graph G satisfy the triangle inequality:
Cuy + Cyw = €uy. Show how to compute a traveling salesman tour of cost
at most twice optimal. Hint: Construct a minimum spanning tree.

Figure 10.75 Game tree, which can be pruned
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9.656

Figure 10.76 Sample for circle packing problem

*10.48 You are a tournament director and need to arrange a round robin tournament
among N = 2* players. In this tournament, everyone plays exactly one game
each day; after N — 1 days, a match has occurred between every pair of
players. Give a recursive algorithm to do this.

10.49*a. Prove that in a round robin tournament it is always possible to arrange
the players in an order p;,, pi,,..., piy such that forall1 < j <N, p;,
has won the match against p; ,,.

b. Give an O(N logN) algorithm to find one such arrangement. Your
algorithm may serve as a proof for part (a).

*10.50 We are given a set P = py, p2,...,pn of N points in a plane. A Voronoi
diagram is a partition of the plane into N regions R; such that all points in
R; are closer to p; than any other point in P. Figure 10.77 shows a sample

Figure 10.77 Voronoi diagram
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*10.51

*10.52

*10.53

Voronoi diagram for seven (nicely arranged) points. Give an O(N log N)
algorithm to construct the Voronoi diagram.

A convex polygon is a polygon with the property that any line segment whose
endpoints are on the polygon lies entirely within the polygon. The convex
hull problem consists of finding the smallest (area) convex polygon which
encloses a set of points in the plane. Figure 10.78 shows the convex hull for
a set of 40 points. Give an O(N log N algorithm to find the convex hull.

Consider the problem of right-justifying a paragraph. The paragraph contains
a sequence of words w1, w3, ..., wx of length ay, a5, . . ., an, which we wish
to break into lines of length L. Words are separated by blanks whose ideal
length is b (millimeters), but blanks can stretch or shrink as necessary (but
must be >0), so that a line w;w;+1 ... w, has length exactly L. However, for
each blank b’ we charge |b' — b| ugliness points. The exception to this is the
last line, for which we charge only if b’ < b (in other words, we charge only
for shrinking), since the last line does not need to be justified. Thus, if b; is
the length of the blank between a; and a;.1, then the ugliness of setting any
line (but the last) w;w;+1...w; for j > i is Zf;ﬂbk —bl= (- - b
where b' is the average size of a blank on this line. This is true of the last line
only if b’ < b, otherwise the last line is not ugly at all.

a. Give a dynamic programming algorithm to find the least ugly setting of
w1, W, ..., wN into lines of length L. Hint: For i = N, N — 1,...,1,
compute the best way to set w;, wi41, ..., WN.

b. Give the time and space complexities for your algorithm (as a function of
the number of words, N).

c. Consider the special case where we are using a line printer instead of a
laser printer, and assume the optimal value of b is 1 (space). In this case,
no shrinking of blanks is allowed, since the next smallest blank space
would be 0. Give a linear-time algorithm to generate the least ugly setting
on a line printer.

The longest increasing subsequence problem is as follows: Given numbers

ai, a,..., an, find the maximum value of k such that g;, < a;, < --- <ag;,,

Figure 10.78 Example of a convex hull
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and i1 < iy < ++- < ip. As an example, if the input is 3,1,4, 1, 5, 9, 2, 6,
5, the rhaximum increasing subsequence has length four (1, 4, 5, 9 among
others). Give an O(N2) algorithm to solve the longest increasing subsequence
problem.

The longest common subsequence problem is as follows: Given two sequences
A = ay,aa,...,am,and B = by, by,. .., by, find the length, k, of the longest
sequence C = ¢y, ¢a,..., ¢, such that C is a subsequence of both A and B.
As an example, if

A =d,y,n,a,m,jc
and
B = p,1,0,8,5,a,m,m,i,n,g,

then the longest common subsequence is a,m and has length 2. Give an
algorithm to solve the longest common subsequence problem. Your algorithm
should run in O(MN) time.

The pattern matching problem is as follows: Given a string S of text, and a
pattern P, find the first occurrence of P in S. Approximate pattern matching
allows k mismatches of three types:

1. A character can be in S that is not in P.
2. A character can be in P that is not in S.
3. P and S can differ in a position.

As an example, if we are searching for the pattern “textbook” with at most
three mismatches in the string “data structures txtborpk”, we find a match
(insert an e, change an r to an o, delete a p). Give an O(MN) algorithm
to solve the approximate string matching problem, where M = |P| and
N =S|

One form of the knapsack problem is as follows: We are given a set of
integers A = ay,4y,...,an and an integer K. Is there a subset of A whose
sum is exactly K? :

a. Give an algorithm that solves the knapsack problem in O(NK) time.
b. Why does this not show that P = NP?

You are given a currency system with coins of (decreasing) value ¢y, ¢3, ..., eN
cents.

a. Give an algorithm that computes the minimum number of coins required
to give K cents in change.

b. Give an algorithm that computes the number of different ways to give K
cents in change.

Consider the problem of placing eight queens on an (eight by eight) chess
board. Two queens are said to attack each other if they are on the same row,
column, or (not necessarily main) diagonal.

a. Give a randomized algorithm to place eight nonattacking queens on the
board.

423



424

CHAPTER 10/ALGORITHM DESIGN TECHNIQUES

Distance
Shortest( S, T, G )

{
Distance dr, Tmp;

if(S=T)
retdrn 0;

dT = UD;
for each Vertex V adjacent to S
{
Tmp = Shortest( V, 7, G );
1f( csy + Tmp < DT)
dr = csv  + Tmp;
}

return dr

}

Figure 10.79 Recursive shortest path algorithm

b. Give a backtracking algorithm to solve the same problem.
c. Implement both algorithms and compare the running time.

*10.59 In the game of chess, a knight in row R and column C may move to row
1 = R' = B and column 1 = C’ = B (where B is the size of the board)
provided that either

[IR-R|=2and|C-C'|=1
or
IR—R|=1and|C-C'|=2
A knight's tour is a sequence of moves that visits all squares exactly once
before returning to the starting point.
a. If B is odd, show that a knight’s tour cannot exist.
b. Give a backtracking algorithm to find a knight’s tour.

10.60 Consider the recursive algorithm in Figure 10.79 for finding the shortest
weighted path in an acyclic graph, from Sto T.

a. Why does this algorithm not work for general graphs?
b. Prove that this algorithm terminates for acyclic graphs.
c. What is the worst-case running time of the algorithm?

References
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MIT; it includes an extensive bibliography.

The linear-time selection algorithm appeared in [9]. [17] discusses the sampling
approach that finds the median in 1.5N expected comparisons. The O(N )
multiplication is from [24]. Generalizations are discussed in [10] and [26]. Strassen’s
algorithm appears in the short paper [53]. The paper states the results and not much
else. Pan [43] gives several divide and conquer algorithms, including the one in
Exercise 10.27. The best known bound is O(N2-376), which is due to Coppersmith
and Winograd [13].

The classic references on dynamic programming are the books [5] and [6]. The
matrix ordering problem was first studied in [19). It was shown in [21] that the
problem can be solved in O(N log N) time.

An O(N?) algorithm was provided for the construction of optimal binary search
trees by Knuth [27]. The all-pairs shortest-path algorithm is from Floyd [16]. A
theoretically better O(N3(loglog N/log N')3) algorithm is given by Fredman [18],
but not surprisingly, it is not practical. A slightly improved bound (with 1/2 instead
of 1/3) is given in [54]; see also [3] for related results. Under certain conditions, the
running time of dynamic programs can automatically be improved by a factor of N
or more. This is discussed in Exercise 10.33, [15], and [58].

The discussion of random number generators is based on [44]. Park and Miller
attribute the portable implementation to Schrage [51]. Skip lists are discussed by
Pugh in [46]. An alternative, namely the freap, is discussed in Chapter 12. The
randomized primality-testing algorithm is due to Miller [38] and Rabin [48]. The
theorem that at most (N ~ 9)/4 values of A fool the algorithm is from Monier [39].
Other randomized algorithms are discussed in [47]. More examples of randomization
techniques can be found in [21], [25], and [40]. '

More information on a-B pruning can be found in [1], [28], and [29]. The top
programs that play chess, checkers, Othello, and backgammon have all achieved
world class status. [35] describes an Othello program. The paper appears in a special
issue on computer games (mostly chess); this issue is a gold mine of ideas. One
of the papers describes the use of dynamic programming to solve chess endgames
completely when only a few pieces are left on the board. Related research has
resulted in the change of the 50-move rule in certain cases.

Exercise 10.41 is solved in [8]. Determining whether a homometric point
set with no duplicate distances exists for N > 6 is open. Christofides [12] gives a
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solution to Exercise 10.47, and also an algorithm which generates a tour at most
% optimal. Exercise 10.52 is discussed in [30]. Exercise 10.55 is solved in [56]. An
O(kN) algorithm is given in [32]. Exercise 10.57 is discussed in [11], but do not be
misled by the title of the paper.
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‘ : CHAPTER 11

Amortized Analysis

In this chapter, we will analyze the running times for several of the advanced
data structures that have been presented in Chapters 4 and 5. In particular, we
will consider the worst-case running time for any sequence of M operations. This
contrasts with the more typical analysis, in which a worst-case bound is given for
any single operation.

As an example, we have seen that AVL trees support the standard tree operations
in O(log N) worst-case time per operation. AVL trees are somewhat complicated
to implement, not only because there are a host of cases, but also because height
balance information must be maintained and updated correctly. The reason that avL
trees are used is that a sequence of &(N) operations on an unbalanced search tree
could require ®(N2) time, which would be expensive. For search trees, the O(N)
worst-case running time of an operation is not the real problem. The major problem
is that this could happen repeatedly. Splay trees offer a pleasant alternative. Although
any operation can still require ®(N) time, this degenerate behavior cannot occur
repeatedly, and we can prove that any sequence of M operations takes O(M log N)
worst-case time (total). Thus, in the long run this data structure behaves as though
each operation takes O(log N). We call this an amortized time bound.

Amortized bounds are weaker than the corresponding worst-case bounds,
because there is no guarantee for any single operation. Since this is generally not
important, we are willing to sacrifice the bound on a single operation, if we can
retain the same bound for the sequence of operations and at the same time simplify
the data structure. Amortized bounds are stronger than the equivalent average-case
bound. For instance, binary search trees have O(log N) average time per operation,
but it is still possible for a sequence of M operations to take O(M N) time.

Because deriving an amortized bound requires us to look at an entire sequence
of operations instead of just one, we expect that the analysis will be more tricky. We
will see that this expectation is generally realized.

In this chapter we shall

e Analyze the binomial queue operations.

® Analyze skew heaps.

¢ Introduce and analyze the Fibonacci i'leap.
@ Analyze splay trees.
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11.1. An Unrelated Puzzie

Consider the following puzzle: Two kittens are placed on opposite ends of a football
field, 100 yards apart. They walk toward each other at the speed of 10 yards per
minute, At the same time, their mother is at one end of the field. She can run at 100
yards per minute. The mother runs from one kitten to the other, making turns with
no loss of speed, until the kittens (and thus the mother) meet at midfield. How far
does the mother run?

It is not hard to solve this puzzle with a brute-force calculation. We leave the
details to you, but one expects that this calculation will involve computing the sum
of an infinite geometric series. Although this straightforward calculation will lead to
an answer, it turns out that a much simpler solution can be arrived at by introducing
an extra variable, namely, time.

Because the kittens are 100 yards apart and approach each other at a combined
velocity of 20 yards per minute, it takes them five minutes to get to midfield. Since
the mother runs 100 yards per minute, her total is 500 yards.

This puzzle illi: .trates the point that sometimes it is easier to solve a problem
indirectly than directly. The amortized analyses that we will perform will use this
idea. We will introduce an extra variable, known as the potential, to allow us to
prove results that seem very difficult to establish otherwise.

11.2. Binomial Queues

The first data structure we will look at is the binomial queue of Chapter 5, which we
now review briefly. Recall that a binomial tree By is a one-node tree, and for k > 0,
the binomial tree B, is built by melding two binomial trees By _; together. Binomial
trees By through B4 are shown in Figure 11.1.

Figure 11.1 Binomial trees By, B;, B;, B3, and B4
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Figure 11.2 Two binomial queues Hy and H;

The rank of a node in a binomial tree is equal to the number of children; in
particular, the rank of the root of By is k. A binomial queue is a collection of
heap-ordered binomial trees, in which there can be at most one binomial tree By, for
any k. Two binomial queues, H; and H;, are shown in Figure 11.2.

The most important operation is Merge. To merge two binomial queues, an
operation similar to addition of binary integers is performed: At any stage we may
have zero, one, two, or possibly three B, trees, depending on whether or not the
two priority queues contain a By tree and whether or not a B, tree is carried over
from the previous step. If there is zero or one By, tree, it is placed as a tree in the
resultant binomial queue. If there are two B, trees, they are melded into a By, tree
and carried over; if there are three By, trees, one is placed as a tree in the binomial
queue and the other two are melded and carried over. The result of merging H; and
H,; is shown in Figure 11.3.

Insertion is performed by creating a one-node binomial queue and performing
a Merge. The time to do this is M + 1, where M represents the smallest type of
binomial tree By not present in the binomial queue. Thus, insertion into a binomial
queue that has a By tree but no Bj tree requires two steps. Deletion of the minimum
is accomplished by removing the minimum and splitting the original binomial queue
into two binomial queues, which are then merged. A less terse explanation of these
operations is given in Chapter 5.

We consider a very simple problem first. Suppose we want to build a binomial
queue of N elements. We know that building a binary heap of N elements can be
done in O(N'}, so we expect a similar bound for binomial queues.

Figure 11.3 Binomial queue H3: the result of merging Hy and H,

my: @
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CLAIM:
A binomial queue of N elements can be built by N successive insertions in O(N)
time.

The claim, if true, would give an extremely simple algorithm. Since the worst-
case time for each insertion is O(log N), it is not obvious that the claim is true.
Recall that if this algorithm were applied to binary heaps, the running time would
be O(N log N ).

To prove the claim, we could do a direct calculation. To measure the running
time, we define the cost of each insertion to be one time unit plus an extra unit for
each linking step. Summing this cost over all insertions gives the total running time."
This total is N units plus the total number of linking steps. The 1st, 3rd, Sth, and
all odd-numbered steps require no linking steps, since there is no By present at the
time of insertion. Thus, half of the insertions require no linking steps. A quarter of
the insertions require only one linking step (2nd, 6th, 10th, and so on). An eighth
require two, and so on. We could add this all up and bound the number of linking
steps by N, proving the claim. This brute-force calculation will not help when we
try to analyze a sequence of operations that include more than just insertions, so we
will use another approach to prove this result.

Consider the result of an insertion. If there is no By tree present at the time of
the insertion, then the insertion costs a total of one unit, using the same accounting
as above. The result of the insertion is that there is now a By tree, and thus we have
added one tree to the forest of binomial trees. If there is a By tree but no B; tree,
then the insertion costs two units. The new forest will have a B; tree but will no
longer have a By tree, so the number of trees in the forest is unchanged. An insertion
that costs three units will create a B, tree but destroy a By and B tree, yielding a
net loss of one tree in the forest. In fact, it is easy to see that, in general, an insertion
that costs ¢ units results in a net increase of 2 — ¢ trees in the forest, because a B,
tree is created but all B; trees 0 < i < ¢ — 1 are removed. Thus, expensive insertions
remove trees, while cheap insertions create trees.

Let C; be the cost of the ith insertion. Let T; be the number of trees after the ith
insertion. Ty = O is the number of trees initially. Then we have the invariant

Ci+ (T~ T1) = 2 (11.1)
We then have
Ci+(h-To) =2
C:+(L—T) =2

Cn-1+ (In-1 —Tn-2) = 2
Cn+(In—Tn-1) =2

If we add all these equations, most of the T; terms cancel, leaving

N
> Ci+Tw—T =2N
i=1
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or equivalently,

N

> Ci=2N-(Ty - T

i=1

Recall that T = 0 and Ty, the number of trees after the N insertions, is
certainly not negative, so (Ty — To) is not negative, Thus

N

> Ci =2N

i=1
which proves the claim.

During the BuzldBmomtalQueue routine, each insertion had a worst-case time
of O(log N), but since the entire routine used at most 2N units of time, the insertions
behaved as though each used no more than two units each.

This example illustrates the general technique we will use. The state of the
data structure at any time is given by a function known as the potential. The
potential function is not maintained by the program, but rather is an accounting
device that will help with the analysis. When operations take less time than we have
allocated for them, the unused time is “saved” in the form of \hlgher potential.
In our example, the potential of the data structure is smiply the number of trees.
In the analysis above, when we have insertions that use only one unit instead of
the two units that are allocated, the extra -unit is saved for later by an increase
in potennal When operations occur that exceed the allotted time, then the excess
time is accounted for by a decrease in potentxal One may view the potential as
representing a savings account. If an operation: uses less than its allotted time, the
difference is saved for use later on by more expensive operations. Figure 11.4 shows

Figure 11.4 A sequence of N Inserts
115
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the cumulative running time used by BuildBinomialQueue over a sequence of
insertions. Observe that the running time never exceeds 2N and that the potential
in the binomial queue after any insertion measures the amount of savings.

Once a potential function is chosen, we write the main equation:

Toctual + APotential = Tamortized (11.2)

Tacals the actual time of an operation, represents the exact (observed) amount of
time required to execute a particular operation. In a binary search tree, for example,
the actual time to perform a Find(X) is 1 plus the depth of the node containing X.
If we sum the basic equation over the entire sequence, and if the final potential is at
least as large as the initial potential, then the amortized time is an upper bound on
the actual time used during the execution of the sequence. Notice that while T,
varies from operation to operation, T, omized 1S Stable.

Picking a potential function that proves a meaningful bound is a very tricky
task; there is no one method that is used. Generally, many potential functions are
tried before the one that works is found. Nevertheless, the discussion above suggests
a few rules, which tell us the properties that good potential functions have. The
potential function should

e Always assume its minimum at the start of the sequence. A popular method of
choosing potential functions is to ensure that the potential function is initially
0, and always nonnegative. All of the examples that we will encounter use this
strategy.

o Cancel a term in the actual time. In our case, if the actual cost was c, then the
potential change was 2 — c. When these are added, an amortized cost of 2 is
obrained. This is shown in Figure 11.5.

We can now perform a complete analysis of binomial queue operations.

Figure 11.5 The insertion cost and potential change for each operation in a se-
quence

Insert cost
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THEOREM 11.1.
The amortized running times of Insert, DeleteMin, and Merge are O(1),
O(log N), and O(log N ), respectively, for binomial queues.

PROOK:

The potential function is the number of trees. The initial potential is 0, and
the potential is always nonnegative, so the amortized time is an upper bound
on the actual time. The analysis for Insert follows from the argument above.
For Merge, assume the two trees have N; and N2 nodes with T; and T
trees, respectively. Let N = N1 + N3. The actual time to perform the merge is
O(log(N,) + log(N3)) = O(log N). After the merge, there can be at most log N
trees, so the potential can increase by at most O(log N ). This gives an amortized
bound of O(log N). The DeleteMin bound follows in a similar manner.

11.3. Skew Heaps

The analysis of binomial queues is a fairly easy example of an amortized analysis.
We now look at skew heaps. As is common with many of our examples, once the
right potential function is found, the analysis is easy. The difficult part is choosing a
meaningful potential function. A

Recall that for skew heaps, the key operation is merging. To merge two skew
heaps, we merge their right paths and make this the new left path. For each node
on the new path, except the last, the old left subtree is attached as the right subtree.
The last node on the new left path is known to not have a right subtree, so it is silly
to give it one. The bound does not depend on this exception, and if the routine is
coded recursively, this is what will happen naturally. Figure 11.6 shows the result
of merging two skew heaps.

Suppose we have two heaps, H; and H;, and there are r; and 73 nodes on their
respective right paths. Then the actual time to perform the merge is proportional to
r1 + r2, so we will drop the Big-Oh notation and charge one unit of time for each
node on the paths. Since the heaps have no structure, it is possible that all the nodes
in both heaps lie on the right path, and this would give a ®(N) worst-case bound
to merge the heaps (Exercise 11.3 asks you to construct an example). We will show
that the amortized time to merge two skew heaps is O(log N ).

Figure 11.6 Merging of two skew heaps
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What is needed is some sort of a potential function that captures the effect of
skew heap operations. Recall that the effect of a Merge is that every node on the
right path is moved to the left path, and its old left child becomes the new right child.
One idea might be to classify each node as a right node or left node, depending on
whether or not it is a right child, and use the number of right nodes as a potential
function. Although the potential is initially 0 and always nonnegative, the problem
is that the potential does not decrease after a merge and thus does not adequately
reflect the savings in the data structure. The result is that this potential function
cannot be used to prove the desired bound.

A similar idea is to classify nodes as either heavy or light, depending on whether
or not the right subtree of any node has more nodes than the left subtree.

DEFINITION: A node p is beavy if the number of descendants of p’s right subtree
is at least half of the number of descendants of p, and light otherwise. Note that the
number of descendants of a node includes the node itself.

As an example, Figure 11.7 shows a skew heap. The nodes with keys 15, 3, 6,
12, and 7 are heavy, and all other nodes are light.

The potential function we will use is the number of heavy nodes in the
(collection) of heaps. This seems like a good choice, because a long right path will
contain an inordinate number of heavy nodes. Because nodes on this path have their
children swapped, these nodes will be converted to light nodes as a result of the
merge.

THEOREM 11.2.
The amortized time to merge two skew heaps is O(log N ).

PROOF:
Let Hy and H; be the two heaps, with N; and N nodes respectively. Suppose
the right path of H; has /; light nodes and b, heavy nodes, for a total of /; + b;.

Figure 11.7 Skew heap—heavy nodes are 3, 6, 7, 12, and 15
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Figure 11.8 Change in heavy/light status after a merge

Likewise, H; has /; light and b2 heavy nodes on its right path, for a total of
> + b2 nodes.

If we adopt the convention that the cost of merging two skew heaps is the
total number of nodes on their right paths, then the actual time to perform the
merge is Iy + I + by + h2. Now the only nodes whose heavy/light status can
change are nodes that are initially on the right path (and wind up on the left
path), since no other nodes have their subtrees altered. This is shown by the
example in Figure 11.8.

If a heavy node is initially on the right path, then after the merge it must
become a light node. The other nodes that were on the right path were light
and may or may not become heavy, but since we are proving an upper bound,
we will have to assume the worst, which is that they become heavy and increase
the potential. Then the net change in the number of heavy nodes is at most
ly + I — b1 — by. Adding the actual time and the potential change (Equation
(11.2)) gives an amortized bound of 2(/; + b).

Now we must show that /; +/, = O(log N). Since /; and /; are the number
of light nodes on the original right paths, and the right subtree of a light node is
less than half the size of the tree rooted at the light node, it follows directly that
the number of light nodes on the right path is at most log N; + log N3, which
is O(log N).

The proof is completed by noting that the initial potential is 0 and that the
potential is always nonnegative. It is important to verify this, since otherwise
the amortized time does not bound the actual time and is meaningless.

Since the Insert and DeleteMin operations are basically just Merges, they also
have O(log N) amortized bounds.

11.4. Fibonacci Heaps

In Section 9.3.2, we showed how to use priority queues to improve on the niive
O(|V}?) running time of Dijkstra’s shortest-path algorithm. The important observa-
tion was that the running time was dominated by |E| DecreaseKey operations and
|V| Insert and DeleteMin operations. These operations take place on a set of size at
most [V|. By using a binary heap, all these operations take O(log|V/|) time, so the
resulting bound for Dijkstra’s algorithm can be reduced to O(|E|log|V)).
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In order to lower this time bound, the time required to perform the DecreaseKey
operation must be improved. d-heaps, which were described in Section 5.5, give an
O(log, |V|) time bound for the DecreaseKey operation as well as for Insert, but
an O(d log, |V|) bound for DeleteMin. By choosing d to balance the costs of |E]|
DecreaseKey operations with |V| DeleteMin operations, and remembering that d
must always be at least 2, we see that a good choice for d is

d = max(2,||E/| V()
This improves the time bound for Dijkstra’s algorithm to

O(IE| log . gyvyy V1)

The Fibonacci heap is a data structure that supports all the basic heap opera-
tions in O(1) amortized time, with the exception of DeleteMin and Delete, which
take O(log N) amortized time. It immediately follows that the heap operations in
Dijkstra’s algorithm will require a total of O(|E| + |V|log|V]) time.

Fibonacci heaps* generalize binomial queues by adding two new concepts:

A different implementation of DecreaseKey: The method we have seen before
is to percolate the element up toward the root. It does not seem reasonable to
expect an O(1) amortized bound for this strategy, so a new method is needed.

Lazy merging: Two heaps are merged only when it is required to do so. This
is similar to lazy deletion. For lazy merging, Merges are cheap, but because
lazy merging does not actually combine trees, the DeleteMin operation could
encounter lots of trees, making that operation expensive. Any one DeleteMin
could take linear time, but it is always possible to charge the time to previous
Merge operations. In particular, an expensive DeleteMin must have been
preceded by a large number of unduly cheap Merges, which were able to store
up extra potential.

11.4.1. Cutting Nodes in Leftist Heaps

In binary heaps, the DecreaseKey opetation is implemented by lowering the value at
a node and then percolating it up toward the root until heap order is established. In
the worst case, this can take O(log N) time, which is the length of the longest path
toward the root in a balanced tree.

This strategy does not work if the tree that represents the priority queue does
not have O(log N) depth. As an example, if this strategy is applied to leftist heaps,
then the DecreaseKey operation could take ®(N) time, as the example in Figure
11.9 shows.

We see that for leftist heaps, another strategy is needed for the DecreaseKey
operation. Our example will be the leftist heap in Figure 11.10. Suppose we want
to decrease the key with value 9 down to 0. If we make the change, we find that we
have created a violation of heap order, which is indicated by a dashed line in Fig-
ure 11.11,

*The name comes from a property of this data structure, which we will prove later in the section.
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Figure 11.11 Decreasing 9 to 0 creates a heap order violation
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H,
Figure 11.12 The two trees after the cut

We do not want to percolate the 0 to the root, because, as we have seen, there
are cases where this could be expensive. The solution is to cut the heap along the
dashed line, thus creating two trees, and then merge the two trees back into one. Let
X be the node to which the DecreaseKey operation is being applied, and let P be its
parent, After the cut, we have two trees, namely, H; with root X, and T, which is
the original tree with H; removed. The situation is shown in Figure 11.12.

If these two trees were both leftist heaps, then they could be merged in O(log N')
time, and we would be done. It is easy to see that H; is a leftist heap, since none
of its nodes have had any changes in their descendants. Thus, since all of its nodes
originally satisfied the leftist property, they still must.

Nevertheless, it seems that this scheme will not work, because T, is not
necessarily leftist. However, it is easy to reinstate the leftist heap property by using
two observations:

® Only nodes on the path from P to the root of T; can be in violation of the

leftist heap property; these can be fixed by swapping children.

e Since the maximum right path length has at most |log(N + 1)] nodes, we only
need to check the first |log(N + 1)] nodes on the path from P to the root of
T,. Figure 11.13 shows H; and T; after T5 is converted to a leftist heap.

Fléure 11.13 T converted to the leftist heap H>
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Figure 11.14 DecreaseKey(H, X, 9) completed by merging Hy and H;

Because we can convert T; to the leftist heap H, in O(log N) steps, and then
merge H; and H;, we have an O(log N) algorithm for performing the DecreaseKey
operation in leftist heaps. The heap that results in our example is shown in Fig-
ure 11,14,

11.4.2. Lazy Merging for Binomial Queues

The second idea that is used by Fibonacci heaps is lazy merging. We will apply
this idea to binomial queues and show that the amortized time to perform a Merge
operation (as well as insertion, which is a special case) is O(1). The amortized time
for DeleteMin will still be O(log N).

The idea is as follows: To merge two binomial queues, merely concatenate the
two lists of binomial trees, creating a new binomial queue. This new queue may
have several trees of the same size, so it violates the binomial queue property. We
will call this a lazy binomial queue in order to maintain consistency. This is a fast
operation that always takes constant (worst-case) time. As before, an insertion is
done by creating a one-node binomial queue and merging. The difference is that the
Merge is lazy. |

The DeleteMin operation is much more painful, because it is where we finally
convert the lazy binomial queue back into a standard binomial queue, but, as we
will show, it is still O(log N) amortized time—but not O(log N) worst-case time,
as before. To perform a DeleteMin, we find (and eventually return) the minimum
element. As before, we delete it from the queue, making each of its children new
trees. We then merge all the trees into a binomial queue by merging two equal-sized
trees until it is no longer possible.

As an example, Figure 11.15 shows a lazy binomial queue. In a lazy binomial
queue, there can be more than one tree of the same size. To perform the DeleteMin,
we remove the smallest element, as before, and obtain the tree in Figure 11.16.
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@eo

Figure 11.15 Lazy binomial queue

P ©° P & o

Figure 11.16 Lazy binomial queue after removing the smallest element (3)

We now have to merge all the trees and obtain a standard binomial queue.
A standard binomial queue has at most one tree of each rank. In order to do this
efficiently, we must be able to perform the Merge in time proportional to the number
of trees present (T') (or log N, whichever is larger). To do this, we form an array
of lists, Lo, L1,..., Lr_,, +1, Where Rm,y is the rank of the largest tree. Each list Ly
contains all of the trees of rank R. The procedure in Figure 11.17 is then applied.

Each time through the loop, at lines 3 through 5, the total number of trees is
reduced by 1. This means that this part of the code, which takes constant time per
execution, can only be performed T — 1 times, where T is the number of trees. The

. for loop counters and tests at the end of the while loop take O(log N) time, so the

running time is O(T + log N ), as required. Figure 11.18 shows the execution of this
algorithm on the previous collection of binomial trees.

Amortized Analysis of Lazy Binomial Queues

To carry out the amortized analysis of lazy binomial queues, we will use the same
potential function that was used for standard binomial queues. Thus, the potential
of a lazy binomial queue is the number of trees.

THEOREM 11.3. .
The amortized running times of Merge and Insert are both O(1) for lazy
binomial queues. The amortized running time of DeleteMin is O(log N).

PROOF:
The potential function is the number of trees in the collection of binomial
queues. The initial potential is 0, and the potential is always nonnegative. Thus,
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/* 1*/ for( R = 0; R <=|log NJ; R++ )

/% 2%/ while |Lg] = 2 do

{
/* 3%/ Remove two trees from Lg;
/* Ax/ Merge the two trees into a new tree;
/* 5%/ Add the new tree to Lg,1;

}
Figure 11.17 Procedure to reinstate a binomial

queue

o o & o «

Figure 11.18 Combining the binomial trees into a binomial queue

over a sequence of operations, the total amortized time is an upper bound on
the total actual time.

For the Merge operation, the actual time is constant, and the number of
trees in the collection of binomial queues is unchanged, so, by Equation (11.2),
the amortized time is O(1).
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For the Insert operation, the actual time is constant, and the number of
trees can increase by at most 1, so the amortized time is O(1).

The DeleteMin operation is more complicated. Let R be the rank of the tree
that contains the minimum element, and let T be the number of trees. Thus, the
potential at the start of the DeleteMin operation is T. To perform a DeleteMin,
the children of the smaHest node are split off into separate trees. This creates
T + R trees, which must be merged into a standard binomial queue. The actual
time to perform this is T + R + log N, if we ignore the constant in the Big-Oh
notation, by the argument above.* On the other hand, once this is done, there
can be at most log N trees remaining, so the potential function can increase by
at most (log N) — T. Adding the actual time and the change in potential gives
an amortized bound of 2log N + R. Since all the trees are binomial trees, we
know that R =< logN. Thus we arrive at an O(log N) amortized time bound
for the DeleteMin operation.

11.4.3. The Fibonacci Heap Operations

As we mentioned before, the Fibonacci heap combines the leftist heap DecreaseKey
operation with the lazy binomial queue Merge operation. Unfortunately, we cannot
use both operations without a slight modification. The problem is that if arbitrary
cuts are made in the binomial trees, the resulting forest will no longer be a collection
of binomial trees. Because of this, it will no longer be true that the rank of every tree
is at most |log N |. Since the amortized bound for DeleteMin in lazy binomial queues
was shown to be 2log N + R, we need R = O(log N) for the DeleteMin bound to
hold. :

In order to ensure that R = O(logN), we apply the following rules to all
nonroot nodes:

® Mark a (nonroot) node the first time that it loses a child (because of a cut).

o If a marked node loses another child, then cut it from its parent. This node
now becomes the root of a separate tree and is no longer marked. This is
called a cascading cut, because several of these could occur in one DecreaseKey
operation,

Figure 11.19 shows one tree in a Fibonacci heap prior to a DecreaseKey
operation. When the node with key 39 is changed to 12, the heap order is violated.
Therefore, the node is cut from its parent, becoming the root of a new tree. Since
the node containing 33 is marked, this is its second lost child, and thus it is cut from
its parent (10). Now 10 has lost its second child, so it is cut from 5. The process
stops here, since 5 was unmarked. The node § is now marked. The result is shown
in Figure 11.20.

Notice that 10 and 33, which used to be marked nodes, are no longer marked,
because they are now root nodes. This will be a crucial observation in our proof of
the time bound.

*We can do this because we can place the constant implied by the Big-Oh notation in the potential
function and still get the cancellation of terms, which is needed in the proof.
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Figure 11.19 A tree in the Fibonacci heap prior to decreasing 39 to 12
) @ @ ©

Figure 11.20 The resulting segment of the Fibonacci heap after the DecreaseKey
operation

11.4.4. Proof of the Time Bound

Recall that the reason for marking nodes is that we needed to bound the rank
(number of children) R of any node. We will now show that any node with N
descendants has rank O(log N).

LEMMA 11.1.
Let X be any node in a Fibonacci heap. Let c; be the ith youngest child of X.
Then the rank of ¢; is at least i — 2.

PROOF:

At the time when c¢; was linked to X, X already had (older) children ¢4, c3, ...,
¢i—1. Thus, X had at least i — 1 children when it linked to c;. Since nodes are
linked only if they have the same rank, it follows that at the time that ¢; was
linked to X, c; had at least i — 1 children. Since that time, it could have lost
at most one child, or else it would have been cut from X. Thus, ¢; has at least
i — 2 children.

From Lemma 11.1, it is easy to show that any node of rank R must have a lot
of descendants.

LEMMA 11.2.
Let Fy, be the Fibonacci numbers definedby Fg = 1, F; = 1, and F = F_,

+ Fy—2. Any node of rank R = 1 has at least Fg41 descendants (including itself).
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PROOF:

Let Sg be the smallest tree of rank R. Clearly, So = 1 and §; = 2. By Lemma
11.1, a tree of rank R must have subtrees of rank at least R —2, R — 3, ..., 1,
and 0, plus another subtree, which has at least one node. Along with the root of
SR itself, this gives a minimum value for Sg>1 of Sg = 2 + Z,‘:z S;. It is easy
to show that Sg = Fpr+1 (Exercise 1.9a).

Because it is well known that the Fibonacci numbers grow exponentially, it
immediately follows that any node with s descendants has rank at most O(logs).
Thus, we have

LEMMA 113,
The rank of any node in a Fibonacci beap is O(log N ).

PROOF:
Immediate from the discussion above.

If all we were concerned about were the time bounds for the Merge, Insert,
and DeleteMin opera.ions, then we could stop here and prove the desired amortized
time bounds. Of course, the whole point of Fibonacci heaps is to obtain an O(1)
time bound for DecreaseKey as well.

- The actual time required for a DecreaseKey operation is 1 plus the number
of cascading cuts that are performed during the operation. Since the number of
cascading cuts could be much more than O(1), we will need to pay for this with a
loss in potential. If we look at Figure 11.20, we see that the number of trees actually
increases with each cascading cut, so we will have to enhance the potential function
to include something that decreases during cascading cuts. Notice that we cannot
just throw out the number of trees from the potential function, since then we will not
be able to prove the time bound for the Merge operation. Looking at Figure 11.20
again, we see that a cascading cut causes a decrease in the number of marked nodes,
because each node that is the victim of a cascading cut becomes an unmarked root.
Since each cascading cut costs 1 unit of actual time and increases the tree potential
by 1, we will count each marked node as two units of potential. This way, we have
a chance of canceling out the number of cascading cuts.

THEOREM 11.4

The amortized time bounds for Fibonacci beaps are O(1) for Insert, Merge, and
DecreaseKey and O(log N) for DeleteMin.

PROOF:

The potential is the number of trees in the collection of Fibonacci heaps plus
twice the number of marked nodes. As usual, the initial potential is 0 and is
always nonnegative. Thus, over a sequence of operations, the total amortized
time is an upper bound on the total actual time.

For the Merge operation, the actual time is constant, and the number of
trees and marked nodes is unchanged, so, by Equation (11.2), the amortized
time is O(1). _

For the Insert operation, the actual time is constant, the number of trees
increases by 1, and the number of marked nodes is unchanged. Thus, the
potential increases by at most 1, so the amortized time is O(1).
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For the DeleteMin operation, let R be the rank of the tree that contains
the minimum element, and let T be the number of trees before the operation.
To perform a DeleteMin, we once again split the children of a tree, creating an
additional R new trees. Notice that, although this can remove marked nodes
(by making them unmarked roots), this cannot create any additional marked
nodes. These R new trees, along with the other T trees, must now be merged, at
acostof T + R +logN = T + O(log N), by Lemma 11.3. Since there can be
at most O(log N) trees, and the number of marked nodes cannot increase, the
potential change is at most O(log N) — T. Adding the actual time and potential
change gives the O(log N) amortized bound for DeleteMin.

Finally, for the DecreaseKey operation, let C be the number of cascading
cuts. The actual cost of a DecreaseKey is C + 1, which is the total number of cuts
performed. The first (noncascading) cut creates a new tree and thus increases
the potential by 1. Each cascading cut creates a new tree, but converts a marked
node to an unmarked (root) node, for a net loss of one unit per cascading cut.
The last cut also can convert an unmarked node (in Fig. 11.20 it is node 5) into
a marked node, thus increasing the potential by 2. The total change in potential
is thus at most 3 — C. Adding the actual time and the potential change gives a
total of 4, which is O(1).

11.5. Splay Trees

As a final example, we analyze the running time of splay trees. Recall, from Chapter
4, that after an access of some item X is performed, a splaying step moves X to the
root by a series of three operations: zig, zig-zag, and zig-zig. These tree rotations
are shown in Figure 11.21. We adopt the convention that if a tree rotation is
being performed at node X, then prior to the rotation P is its parent and G is its
grandparent (if X is not a child of the root).

Recall that the time required for any tree operation on node X is proportional to
the number of nodes on the path from the root to X. If we count each zig operation
as one rotation and each zig-zig or zig-zag as two rotations, then the cost of any
access is equa! to 1 plus the number of rotations.

In order to show an O(log N ) amortized bound for the splaying step, we need
a potential function that can increase by at most O(log N') over the entire splaying
step but that will also cancel out the number of rotations performed during the step.
It is not at all easy to find a potential function that satisfies these criteria. A simple
first guess at a potential function might be the sum of the depths of all the nodes in
the tree. This does not work, because the potential can increase by ®(N) during an
access. A canonical example of this occurs when elements are inserted in sequential
order.

A potential function ® that does work is defined as

®(T) = > logS(i)
ieT
where § (7) represents the number of descendants of i (including i itself). The potential
function is the sum, over all nodes / in the tree T, of the logarithm of S(i).

447



448

CHAPTER 11/AMORTIZED ANALYSIS

Figure 11.21 zig, zig-zag, and zig-zig operations; each has a symmetric case (not
shown)

To simplify the notation, we will define
R(i) = logS(i)
This makes

®(T) = > R(i)
i€T

R(i) represents the rank of node i. The terminology is similar to what we used in
the analysis of the disjoint set algorithm, binomial queues, and Fibonacci heaps. In
all these data structures, the meaning of rank is somewhat different, but the rank is
generally meant to be on the order (magnitude) of the logarithm of the size of the
tree. For a tree T with N nodes, the rank of the root is simply R(T) = logN. Using
the sum of ranks as a potential function is similar to using the sum of heights as a
potential function. The important difference is that while a rotation can change the
heights of many nodes in the tree, only X, P, and G can have their ranks changed.

Before proving the main theorem, we need the following lemma.

LEMMA 11.4.
Ifa + b =< ¢, and a and b are both positive integers, then

loga + logb = 2logc —2
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PROOF:
By the arithmetic-geometric mean inequality,

Jab = (a + b)2
Thus

\/:IZSC/Z

Squaring both sides gives
ab = c*/4
Taking logarithms of both sides proves the lemma.

With the preliminaries taken care of, we are ready to prove the main theorem.

THEOREM 11.5

The amortized time to splay a tree with root T at node X is at most 3(R(T') —
R(X)) +1 = O(logN).

PROOF:
The potential function is the sum of the ranks of the nodes in T.

If X is the root of T, then there are no rotations, so there is no potential
change. The actual time is 1 to access the node; thus, the amortized time is 1
and the theorem is true. Thus, we may assume that there is at least one rotation.

For any splaying step, let R;(X) and S;(X) be the rank and size of X before
the step, and let R¢(X) and S¢(X) be the rank and size of X immediately after
the splaying step. We will show that the amortized time required for a zig is at
most 3(Rs(X) — R;(X)) + 1 and that the amortized time for either a zig-zag or
zig-zig is at most 3(R¢(X) — R;(X)). We will show that when we add over all
steps, the sum telescopes to the desired time bound. '

Zig step: For the zig step, the actual time is 1 (for the single rotation),
and the potential change is R¢(X) + R¢(P) — R;(X) — R;(P). Notice that the
potential change is easy to compute, because only X’s and P’s trees change size.
Thus

ATzig =1+ Rf(X) + Rf(P) — Ri(X) — R;{P)

From Figure 11.21 we see that S;(P) = §;(P); thus, it follows that R;(P) =
R¢(P). Thus,

AT < 1+ Re(X) - Ri(X)

Since §¢(X) = §;(X), it follows that R¢(X) — R;(X) = 0, so we may increase
the right side, obtaining

ATy = 1+ 3(Rf(X) — Ri(X))

Zig-zag step: For the zig-zag case, the actual cost is 2, and the potential
change is R¢(X) + Rf(P) + Rf(G) — Ri(X) — R;(P) — R;(G). This gives an
amortized time bound of

ATigzag = 2 + Re(X) + R¢(P) + R¢(G) — Ri(X) — Ry(P) — Ri(G)
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From Figure 11.21 we see that §¢(X) = S;(G), so their ranks must be equal.
Thus, we obtain

ATigzag = 2 + Rp(P) + R(G) — Ri(X) — Ry(P)

we also see that S;(P) = §;(X). Consequently, R;(X) = R;(P). Making this
substitution gives

ATyigzag < 2 + Rf(P) + Rf(G) — 2R;(X)

From Figure 11.21 we see that S;(P) + §¢(G) = §¢(X). If we apply Lemma
11.4, we obtain

logS¢(P) + log S¢(G) = 2log§¢(X) — 2
By the definition of rank, this becomes

R(P) + Rf(G) = 2Rp(X) — 2
Substituting this, we obtain

ATig.12g < 2R4(X) = 2R;(X)

= 2(R¢(X) - Ri(X))

Since R¢(X) = R;(X), we obtain

ATiigzag = 3(Rf(X) — Ri(X))

Zig-zig step: The third case is the zig-zig. The proof of this case is very
similar to the zig-zag case. The important inequalities are Rf(X) = R;(G),
R¢(X) = R¢(P), Ri(X) = Ry(P), and §;(X) + 5¢(G) = S7(X). We leave the
details as Exercise 11.8.

Figure 11.22 The splaying steps involved in splaying at node 2




SUMMARY

The amortized cost of an entire splay is the sum of the amortized costs of
each splay step. Figure 11.22 shows the steps that are performed in a splay at
node 2. Let Rq(2), R2(2), R3(2), and R4(2) be the rank of node 2 in each of the
four trees. The cost of the first step, which is a zig-zag, is at most 3(R2(2)—R1(2)).
The cost of the second step, which is a zig-zig, is 3(R3(2) — R2(2)). The last step
is a zig and has cost no larger than 3(R4(2) — R3(2)) + 1. The total cost thus
telescopes to 3(R4(2) — Ry(2)) + 1.

In general, by adding up the amortized costs of all the rotations, of which
at most one can be a zig, we see that the total amortized cost to splay at node
X is at most 3(R¢(X) — R;(X)) + 1, where R;(X) is the rank of X before the
first splaying step and Ry(X) is the rank of X after the last splaying step. Since
the last splaying step leaves X at the root, we obtain an amortized bound of
3(Rf(T) — Ri(X)) + 1, which is O(log N). ‘

Because every operation on a splay tree requires a splay, the amortized cost of
any operation is within a constant factor of the amortized cost of a splay. Thus,
all splay tree operations take O(log N) amortized time. By using a more general
potential function, it is possible to show that splay trees have several remarkable
properties. This is discussed in more detail in the exercises.

Summary

In this chapter, we have seen how an amortized analysis can be used to apportion
charges among operations. To perform the analysis, we invent a fictitious potential
function. The potential function measures the state of the system. A high-potential
data structure is volatile, having been built on relatively cheap operations. When
the expensive bill comes for an operation, it is paid for by the savings of previous
operations. One can view potential as standing for potential for disaster, in that very
expensive operations can occur only when the data structure has a high potential
and has used considerably less time than has been allocated.

Low potential in a data structure means that the cost of each operation has
been roughly equal to the amount allocated for it. Negative potential means debt;
more time has been spent than has been allocated, so the allocated (or amortized)
time is not a meaningful bound.

As expressed by Equation (11.2), the amortized time for an operation is equal
to the sum of the actual time and potential change. Taken over an entire sequence
of operations, the amortized time for the sequence is equal to the total sequence
time plus the net change in potential. As long as this net change is positive, then
the amortized bound provides an upper bound for the actual time spent and is
meaningful.

The keys to choosing a potential function are to guarantee that the minimum
potential occurs at the beginning of the algorithm, and to have the potential increase
for cheap operations and decrease for expensive operations. It is important that the
excess or saved time be measured by an opposite change in potential. Unfortunately,
this is sometimes easier said than done.
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Exercises

11.1

11.2

*11.3

*11.4

11.5

11.6

11.7

11.8
11.9

11.10

11.11

11.12

When do M consecutive insertions into a binomial queue take less than 2M
time units?

Suppose a binomial queue of N = 2% — 1 elements is built. Alternately per-
form M Insert and DeleteMin pairs. Clearly, each operation takes O(log N)
time. Why does this not contradict the amortized bound of O(1) for insertion?

Show that the amortized bound of O(log N) for the skew heap operations
described in the text cannot be converted to a worst-case bound, by giving a
sequence of operations that lead to a Merge requiring ®(N ) time.

Show how to merge two skew heaps with one top-down pass and reduce the
Merge cost to O(1) amortized time.

Extend skew heaps to support the DecreaseKey operation in O(logN)
amortized time.

Implement Fibonacci heaps and compare their performance with that of
binary heaps when used in Dijkstra’s algorithm.

A standard implementation of Fibonacci heaps requires four pointers per
node (parent, child, and two siblings). Show how to reduce the number of
pointers, at the cost of at most a constant factor in the running time.

Show that the amortized time of a zig-zig splay is at most 3(R¢(X) — R;(X)).

By changing the potential function, it is possible to prove different bounds
for splaying. Let the weight function W (i) be some function assigned to each
node in the tree, and let S(i} be the sum of the weights of all the nodes in the
subtree rooted at i, including i itself. The special case W (i) = 1 for all nodes
corresponds to the function used in the proof of the splaying bound. Let N
be the number of nodes in the tree, and let M be the number of accesses.
Prove the following two theorems:

a. The total access time is O(M + (M + N)logN).

*b. If g; is the number of times that item 7 is accessed, and gq; > 0 for all 4,
then the total access time is

N
o) (M + > g;log(M/g; ))
i=1

a. Show how to implement the Merge operation on splay trees so that any
sequence of N — 1 Merges starting from N single-element trees takes
O(N log? N) time.

*b. Improve the bound to O(N log N).

In Chapter 7, we described rebashing: When a table becomes more than half
full, a new table twice as large is constructed, and the entire old table is
rehashed. Give a formal amortized analysis, with potential function, to show
that the amortized cost of an insertion is still O(1).

Show that if deletions are not allowed, then any sequence of M insertions
into an N-node 2-3 tree produces O(M + N) node splits.
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11.13 A deque with beap order is a data structure consisting of a list of items, on
which the following operations are possible:
Push(X,D): Insert item X on the front end of deque D.
Pop(D): Remove the front item from deque D and return it.
Inject(X,D): Insert item X on the rear end of deque D.
Eject(D): Remove the rear item from deque D and return it.
FindMin(D): Return the smallest item from deque D (breaking ties arbitrarily).

a. Describe how to support these operations in constant amortized time per
operation.
**b. Describe how to support these operations in constant worst-case time per
operation.
11.14 Show that the binomial queues actually support merging in O(1) amortized
time. Define the potential of a binomial queue to be the number of trees plus
the rank of the largest tree.
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‘“ CHAPTER 12

Advanced Data Structures
and Implementation

In this chapter, we discuss seven data structures with an emphasis on pfacticality.
We begin by examining alternatives to the avL tree discussed in Chapter. 4. These
include an optimized version of the splay tree, the red black tree, a deterministic
form of the skip list (previously discussed in Chapter 10), the AA-tree, and the treap.

We then examine a data structure that can be used for multidimensional data.
In this case, each item may have several keys. The k-d tree allows searching relative
to any key.

Finally, we examine the pairing heap, which, despite a lack of analytical results,
seems to be the most practical alternative to the Fibonacci heap.

Recurring themes include

¢ Nonrecursive, top-down (instead of bottom-up) search tree implementations
when appropriate.

® Detailed, optimized implementations that make use of, among other things,
sentinel nodes.

12.1. Top-Down Splay Trees

In Chapter 4, we discussed the basic splay tree operation. When an item X is inserted
as a leaf, a series of tree rotations, known as a splay, makes X the new root of the
tree. A splay is also performed during searches, and if an item is not found, a splay
is performed on the last node on the access path. In Chapter 11, we showed that the
amortized cost of a splay tree operation is O(log N ).

A direct implementation of this strategy requires a traversal from the root down
the tree, and then a bottom-up traversal to implement the splaying step. This can be
done either by maintaining parent pointers (as shown in Chapter 4), or by storing the
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access path on a stack. Unfortunately, both methods require a substantial amount
of overhead, and both must handle many special cases. In this section, we show
how to perform rotations on the initial access path. The result is a procedure that
is faster in practice, uses only O(1) extra space, but retains the O(log N) amortized
time bound.

Figure 12.1 shows the rotations for the zig, zig-zig, and zig-zag cases. (As is
customary, three symmetric rotations are omitted.) At any point in the access, we
have a current node X that is the root of its subtree; this is represented in our
diagrams as the “middle” tree.” Tree L stores nodes in the tree T that are less than
X, but not in X’s subtree; similarly tree R stores nodes in the tree T that are larger
than X, but not in X’s subtree. Initially, X is the root of T, and L and R are empty.

If the rotation should be a zig, then the tree rooted at Y becomes the new root
of the middle tree. X and subtree B are attached as a left child of the smallest item
in R; X’s left child is logically made NULL.! As a result, X is the new smallest item
in R. Note carefully that Y does not have to be a leaf for the zig case to apply. If we
are searching for an item that is smaller than Y, and Y has no left child (but does
have a right child), then the zig case will apply.

Figure 12.1 Top-down splay rotations: zig, zig-zig, and zig-zag
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*For simplicity we don’t distinguish between a “node” and the item in the node.
'In the code, the smallest node in R does not have a NULL left pointer because there is no need for it.
This means that PrintTree(R) will include some items that logically are not in R.
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For the zig-zig case, we have a similar dissection. The crucial point is that a
rotation between X and Y is performed. The zig-zag case brings the bottom node Z
to the top in the middle tree, and attaches subtrees X and Y to R and L, respectively.
Note that Y is attached to, and then becomes, the largest item in L.

The zig-zag step can be simplified somewhat because no rotations are performed.
Instead of making Z the root of the middle tree, we make Y the root. This is shown
in Figure 12.2. This simplifies the coding because the action for the zig-zag case
becomes identical to the zig case. This would seem advantageous because testing for
a host of cases is time-consuming. The disadvantage is that by descending only one
level, we have more iterations in the splaying procedure.

Once we have performed the final splaying step, Figure 12.3 shows how L, R,
and the middle tree are arranged to form a single tree. Note carefully that the result
is different from bottom-up splaying. The crucial fact is that the O(log N') amortized
bound is preserved (Exercise 12.1).

An example of the top-down splaying algonthm is shown in Figure 12.4, We
attempt to access 19 in the tree. The first step is a zig-zag. In accordance with (a
symmetric version of) Figure 12.2, we bring the subtree rooted at 25 to the root of
the middle tree, and attach 12 and its left subtree to L.

Next we have a zig-zig: 15 is elevated to the root of the middle tree, and a
rotation between 20 and 25 is performed, with the resulting subtree being attached
to R. The search for 19 then results in a terminal zig. The middle tree’s new root is
18, and 15 and its left subtree are attached as a right child of L’s largest node. The
reassembly, in accordance with Figure 12.3, terminates the splay step.

We will use a header with left and right pointers to eventually contain the roots
of the left and right trees. Since these trees are initially empty, a header is used to
correspond to the min or max node of the right or left tree, respectively, in this
initial state. This way the code can avoid checking for empty trees. The first time the
left tree becomes nonempty, the right pointer will get initialized and will not change

Figure 12.2 Simplified top-down zig-zag
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Figure 12.3 Final arrangement for top-down splaying
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Figure 12.4 Steps in top-down splay (access 19 in top tree)
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in the future; thus it will contain the root of the right tree at the end of the top-down
search. Similarly, the left pointer will eventually contain the root of the right tree.

The procedure Initialize, shown in Figure 12.5, is used to allocate the Nul/Node
sentinel. We use the sentinel Null[Node to represent a NULL pointer. We will
repeatedly use this technique to simplify the code (and consequently make the code
somewhat faster). Figure 12.6 gives the code for the splaying procedure. The Header
node allows us to be certain that we can attach X to the largest node in R without
having to worry that R might be empty (and similarly for the symmetric case dealing
with L).

As we mentioned above, before the reassembly at the end of the splay,
Header.Left and Header.Right point at R and L, respectively (this is not a typo—
follow the pointers). Except for this detail, the code is relatively straightforward.

Figure 12.7 shows the procedure to insert an item into a tree T. A new node
is allocated (if necessary), and if T is empty, a one-node tree is created. Otherwise
we splay T around Item. If the data in T°s new root is equal to Item, we have a
duplicate; instead of reinserting Iters, we preserve NewNode for a future insertion
and return immediately. If T°s new root contains a value larger than Item, then T’s
new root and its right subtree become a right subtree of NewNode, and T’s left
subtree becomes the left subtree of NewNode. Similar logic applies if T’s new root
contains a value smaller than Item. In either case, NewNode becomes the new root.

In Chapter 4, we showed that deletion in splay trees is easy, because a splay
will place the target of the deletion at the root. We close by showing the deletion
routine in Figure 12.8. It is indeed rare that a deletion procedure is shorter than the
corresponding insertion procedure.

12.2. Red Black Trees

A historically popular alternative to the aAvL tree is the red black tree. Operations
on red black trees take O(log N) time in the worst case, and, as we will see, a
careful nonrecursive implementation (for insertion) can be done relatively effortlessly
(compared with avL trées).

A red black tree is a binary search tree with the following coloring properties:

1. Every node is colored either red or black.
The root is black.
If a node is red, its children must be black.

e

Every path from a node to a NULL pointer must contain the same number
of black nodes.

A consequence of the coloring rules is that the height of a red black tree is
at most 2log(N + 1). Consequently, searching is guaranteed to be a logarithmic
operation. Figure 12.9 shows a red black tree. Red nodes are shown with double
circles.
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#1ifndef _Splay_H

struct SplayNode;
typedef struct SplayNode *SplayTree;

SplayTree MakeEmpty( SplayTree T );

SplayTree Find( ElementType X, SplayTree T );

SplayTree FindMin( SplayTree T );

SplayTree FindMax( SplayTree T );

SplayTree Initialize( void );

SplayTree Insert( ElementType X, SplayTree T );

SplayTree Remove( ElementType X, SplayTree T );
ElementType Retrieve( SplayTree T ); /* Gets root item */

#endif /* _Splay_H */

/* Place in the implementation file */
struct SplayNode

ElementType Element;
SplayTree Left;
SplayTree Right;

typedef struct SplayNode *Position;
static Position NullNode = NULL; /* Needs initialization */

SplayTree
Initialize( void )

if( NullNode == NULL )

{
Nul1Node = malloc( sizeof( struct SplayNode ) );

if( NuliNode == NULL )
FatalError( "Out of space!!!" );
NullNode->Left = NullNode->Right = NullNode;

return NullNode;

}

Figure 12.5 Splay trees: declarations and initialization



12.2. RED BLACK TREES

/* Top-down splay procedure, */
/* not requiring Item to be in the tree */

SplayTree
Splay( ElementType Item, Position X )
{

static struct SplayNode Header;
Position LeftTreeMax, RightTreeMin;

Header.Left = Header.Right = NullNode;
LeftTreeMax = RightTreeMin = &Header;
NulTNode->Element = Item;

while( Item != X->Element )

if( Item < X->Element )

{
if( Item < X->Left->Element )
X = SingleRotateWithLeft( X );
if( X->Left == NullNode )
break;
/% Link right */
RightTreeMin->Left = X;
RightTreeMin = X;
X = X->Left;
}
else

if( Item > X->Right->Element )
X = SingleRotateWithRight( X );
if( X->Right == NullNode )
break;
/* Link Left %/
LeftTreeMax->Right = X;
LeftTreeMax = X;
X = X->Right;

}
} /* while Item != X->Element */

/* Reassemble */
LeftTreeMax->Right = X->Left;
RightTreeMin->Left = X->Right;
X->Left = Header.Right;
X->Right = Header.lLeft;

nn

return X;

}

Figure 12.6 Top-down splaying procedure
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SplayTree
Insert( ElementType Item, SplayTree T )

{
static Position NewNode = NULL;

if( NewNode == NULL )
NewNode = malloc( sizeof( struct SplayNode ) );
if( NewNode == NULL )
FatalError( "Out of space!!!" );

}
NewNode->Element = Item;
if( T == NullNode )

NewNode->Left = NewNode->Right = NullNode;

T = NewNode;
}
else
{
T = Splay( Item, T );
if( Item < T->Element )
{
NewNode->Left = T->Left;
NewNode->Right = T;
T->Left = NullNode;
T = NewNode;
}
else
if( T->Element < Item )
{
NewNode->Right = T->Right;
NewNode->Left = T;
T->Right = NullNode;
T = NewNode;
}
else
return T; /* Already in the tree */
}
NewNode = NULL; /* So next insert will call malloc */
return T;

}

Figure 12.7 Top-down splay tree insert
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SplayTree
Remove( ElementType Item, SplayTree T )

{
Position NewTree
if( T 1= NullNode )

T = Splay( Item, T );
if( Item == T->Element )

{
/* Found it! */
if( T->Left == NullNode )
NewTree = T->Right; -
else
{
NewTree = T->Left
NewTree = Splay( Item, NewTree ),
NewTree->Right = T- >R1ght,‘\ :
} ; o
free( T );
T = NewTree;
}
}
return T;

}

Figure 12.8 Top-down deledion procedure

Figure 12.9 Example of a red black tree (insertion sequence is: 10, 85, 15, 70, 20,
60, 30, 50, 65, 80, 90, 40, 5, 55)
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The difficulty, as usual, is inserting a new item into the tree. The new item, as
usual is placed as a leaf in the tree. If we color this item black, then we are certain
to violate condition 4, because we will create a longer path of black nodes. Thus
the item must be colored red. If the parent is black, we are done. If the parent is
already red, then we will violate condition 3 by having consecutive red nodes. In
this case, we have to adjust the tree to ensure that condition 3 is enforced (without
introducing a violation of condition 4). The basic operations that are used to do this
are color changes and tree rotations.

12.2.1. Bottom-Up Insertion

As we have already mentioned, if the parent of the newly inserted item is black, we
are done. Thus insertion of 25 into the tree in Figure 12.9 is trivial.

There are several cases (each with a mirror image symmetry) to consider if the
parent is red. First, suppose that the sibling of the parent is black (we adopt the
convention that NULL nodes are black). This would apply for an insertion of 3 or
8, but not for the insertion of 99. Let X be the newly added leaf, P be its parent, S
be the sibling of the parent (if it exists), and G be the grandparent. Only X and P
are red in this case; G is black, because otherwise there would be two consecutive
red nodes prior to the insertion, in violation of red black rules. Adopting the splay
tree terminology, X, P, and G can form either a zig-zig chain or a zig-zag chain (in
either of two directions). Figure 12.10 shows how we can rotate the tree for the case
where P is a left child (note there is a symmetric case). Even though X is a leaf, we
have drawn a more general case that allows X to be in the middle of the tree. We
will use this more general rotation later.

The first case corresponds to a single rotation between P and G, and the sec-
ond case corresponds to a double rotation, first between X and P and then between X

Figure 12.10 Zig rotation and zig-zag rotation work if S is black
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and G. When we write the code, we have to keep track of the parent, the grandparent,
and, for reattachment purposes, the great-grandparent

In both cases, the subtree’s new root is colored black, and so even if the original
great-grandparent was red, we removed the possibility of two consecutive red nodes.
Equally important, the number of black nodes on the paths into A, B, and C has
remained unchanged as a result of the rotations.

So far so good. But what happens if S is red, as is the case when we attempt
to insert 79 in the tree in Figure 12.9? In that case, initially there is one black node
on the path from the subtree’s root to C. After the rotation, there must still be
only one black node. But in both cases, there are three nodes (the new root, G,
and $) on the path to C. Since only one may be black, and since we cannot have
consecutive red nodes, it follows that we’d have to color both § and the subtree’s
new root red, and G (and our fourth node) black. That’s great, but what happens
if the great-grandparent is also red? In that case, we could percolate this procedure
up toward the root as is done for B-trees and binary heaps, until we no longer have
two consecutive red nodes, or we reach the root (which will be recolored black).

12.2.2. Top-Down Red Black Trees

Implementing the percolation would require maintaining the path using a stack or
parent pointers. We saw that splay trees are more efficient if we use a top-down
procedure, and it turns.out that we can apply a top-down procedure to red black
trees that guarantees that S won’t be red.

The procedure is conceptually easy. On the way down, when we see a node X
that has two red children, we make X red and the two children black. Figure 12.11
shows this color flip. This will induce a red black violation only if X’s parent P is
also red. But in that case, we can apply the appropriate rotations in Figure 12.10.
What if X’s parent’s sibling is red? This possibility has been removed by our actions
on the way down, and so X’s parent’s sibling can’t be red! Specifically, if on the
way down the tree we see a node Y that has two red children, we know that Y’s
grandchildren must be black, and that since ¥’s children are made black too, even
after the rotation that may occur, we won’t see another red node for two levels.
Thus when we see X, if X’s parent is red, it is not possible for X’s parent’s sibling to
be red also.

As an example, suppose we want to insert 45 into the tree in Figure 12.9. On the
way down the tree, we see node 50, which has two red children. Thus, we perform
a color flip, making 50 red, and 40 and 55 black. Now 50 and 60 are both red. We
perform the single rotation between 60 and 70, making 60 the black root of 30’s
right subtree, and 70 and 50 both red. We then continue, performing an identical
action if we see other nodes on the path that contain two red children. When we get
to the leaf, we insert 45 as a red node, and since the parent is black, we are done.
The resulting tree is shown in Figure 12.12.

As Figure 12.12 shows, the red black tree that results is frequently very well
balanced. Experiments suggest that the average red black tree is about as deep as
an average AVL tree and that, consequently, the searching times are typically near
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Figure 12.12 Insertion of 45 into Figure 12.9

optimal. The advantage of red black trees is the relatively low overhead required to
perform insertion, and the fact that in practice rotations occur relatively infrequently.,

An actual implementation is complicated not only by the host of possible
rotations, but also by the possibility that some subtrees (such as 10’s right subtree)
might be empty, and the special case of dealing with the root (which among other
things, has no parent). Thus, we use two sentinel nodes: one for the root, and
NullNode, which indicates a NULL pointer as it did for-splay trees. The root
sentinel will store the key —= and a right pointer to the real root. Because of this, the
searching and printing procedures need to be adjusted. The recursive routines are
trickiest. Rather than compel the user to pass T—Right we use a hidden recursive
procedure. Consequently, the user need not be concerned with the header node.
Figure 12.13 shows how the inorder traversal is rewritten.

We also need to require the user to call the routine Initialize to allocate
the header node. Initialize should also allocate NulINode if this is the first tree
constructed (subsequent trees can share NullNode). This, along with a sketch of the
type declarations, is shown in Figure 12.14.

Next, Figure 12,15 shows the routine to perform a single rotation. Because
the resultant tree must be attached to a parent, Rotate takes the parent node as a
parameter. Rather than keeping track of the type of rotation as we descend the tree,
we pass Item as a parameter. Since we expect very few rotations during the insertion
procedure, it turns out that it is not only simpler, but actually faster, to do it this
way. Rotate simply retuens the result of performing an appropriate single rotation.

Finally, we provide the insertion procedure in Figure 12.16. The routine
HandleReorient is called when we encounter a node with two red children, and also



12.2. RED BIACKTREES

when we insert a leaf. The only tricky part is the observation that a double rotation
is really two single rotations, and is done only when branching to X takes opposite
directions. As we mentioned in the earlier discussion, Inser must keep track of the
parent, grandparent, and great-grandparent as the tree is descended. Note that after
a rotation, the values stored in the grandparent and great-grandparent are no longer
correct. However, we are assured that they will be restored by the time they are next

needed.

12.2.3. Top-Down Deletion

Deletion in red black trees can also be performed top-down. Everything boils down
to being able to delete a leaf. This is because to delete a node that has two children,
we replace it with the smallest node in the right subtree; that node; which must have
at most one child, is then deleted. Nodes with only a right child can be deleted in
the same manner, while nodes with only a left child can be deleted by replacement
with the largest node in the left subtree, and subsequent deletion of that node. Note
that for red black trees, we don’t want to use the strategy of bypassing for the case
of a node with one child because that may connect two red nodes in the middle of
the tree, making enforcement of the red black condition difficult.

Deletion of a red leaf is, of course, trivial. If a leaf is black, however, the deletion
is more complicated because removal of a black node will violate condition 4. The
solution is to ensure during the top-down pass that the leaf is red.

Figure 12.13 Inorder traversal for tree with two
sentinels

/* Print the tree, watch out for NullNode, */
/* and skip header */

static void '
DoPrint( RedBlackTree T )

if( T != NullNode )

{
DoPrint( T->Left );
Output( T->Element );
DoPrint( T->Right );
}
}
void
PrintTree( RedBlackTree T )
{ N

DoPrint( T->Right );
} .
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typedef enum ColorType { Red, Black } ColorType;

struct RedBlackNode

{
ElementType Element
RedBlackTree Left;
RedBlackTree Right;
ColorType Color;
H

Position NullNode = NULL; /* Needs initialization */

/* Initialization procedu re */
RedBlackTree
Initialize( void )

{
RedBlackTree T;

if( NuliNode = NULL )

{
Nul1Node == malloc( sizeof( struct RedBlackNode ) )
if( NulIiNode == NULL )
FatalError( "Out of space!!!"™ );
Nul1Node->Left = NulINode->Right = NullNode;
NuliNode->Color = Black;
Nul1Node->Element = Infinity;
}

/* Create the header node */
T = malloc( sizeof( struct RedBlackNode ) );
if( T == NULL )

FatalError( "Out of space!!!" );
T->Element = NegInfinity;
T->Left = T->Right = NullNode;
T->Color = Black; ’

return T;

}

Figure 12.14 Type declarations and initialization

Throughout this discussion, let X be the current node, T be its sibling, and P
be their parent. We begin by coloring the root red. As we traverse down the tree, we
attempt to ensure that X is red. When we arrive at a new node, we are certain that P
is red (inductively, by the invariant we are trying to maintain), and that X and T are
black (because we can’t have two consecutive red nodes). There are two main cases.
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/* Perform a rotation at node X */
/* (whose parent is passed as a parameter) */
/* The child is deduced by examining.Item =/

static Position
Rotate( ElementType Item, Position Parent )

if( Item < Parent->Element )
return Parent->Left = Item < Parent->Left->Element ?
SingleRotateWwithLeft( Parent->Left ) :
SingleRotateWithRight( Parent->Left );
else -
return Parent->Right = Item < Parent->Right->Element ?
SingleRotateWithLeft( Parent->Right ) :
SingleRotateWithRight( Parent->Right );
}

Figure 12.15 Rotate procedure

static Position X, P, GP, GGP;

static
void HandleReorient( ElementType Item, RedBlackTree T )
{
X->Color = Red; /* Do the color flip */
X->Left->Color = Black;
X->Right->Color = Black;

if( P->Color == Red ) /* Have to rotate */
{ ,
GP->Color = Red;
if( (Item < GP->Element) != (Item < P->Element) )
P = Rotate( Item, GP ); /* Start doub]e rotat1on */
= Rotate( Item, GGP );
X >Co1or = Black;

} :
T->Right->Color = Black; /* Make root black */
}

RedBlackTree
Insert( ElementType Item, RedBlackTree T )
{
X=P=GP =T;
NuliNode->Element = Item;
while( X->Elenent != Item ) /* Descend down the tree */

Figure 12.16 Insertion procedure
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GGP = GP; GP = P; P =
if( Item < X->Element
X = X->Left;

else
X = X->Right;

if( X->Left->Color == Red && X->R1ght ->Color == Red )
HandleReorient( Item T);

X;
)

}

if( X != NullNode )
return NullNode; /* Duplicate */

X = malloc( sizeof( struct RedBlackNode ) );
if( X == NULL )

FatalError( "Out of space' 1",
X->Element = Item;
X->Left = X->Right = NullNode;

if( Item < P->Element ) /* Attach to its parent */
P->Left = X;
' else
P->Right =
HandleReorient( Item, T ); /* Color red; maybe rotate */

return T;

}

Figure 12.16 Insertion procedure (continued)

First, suppose X has two black children. Then there are three subcases, which
are shown in Figure 12.17. If T also has two black children, we can flip the colors
of X, T, and P to maintain the invariant. Otherwise, one of T’s children is red.
Depending on which one it is,” we can apply the rotation shown in the second and
third cases of Figure 12.17. Note carefully that this case will apply for the leaf,
because NullNode is considered to be black.

Otherwise one of X’s children is red. In this case, we fall through to the next
level, obtaining new X, T, and P. If we’re lucky, X will land on the red child, and
we can continue onward. If not, we know that T will be red, and X and P will be
black. We can rotate T and P, making X’s new parent red; X and its grandparent
will, of course, be black. At this point we can go back to the first main case.

*If both children are red; we can apply either rotation. As usual, there are symmetric rotations for the
case when X is a right child that are not shown.
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Figure 12,17 Three cases when X is a left child and has two black‘ children .

12.3. Deterministic Skip Lists

The ideas that we saw used for red black trees can be applied to skip lists to
ensure logarithmic worst-case operation. In this section, we describe the simplest
implementation of the resulting data structure, the 1-2-3 deterministic skip list.

Recall from Chapter 10 that nodes in a skip list have randomly assigned heights.
A node of height b contains b forward pointers p1, pa, ..., pPy; p: points to the next
node of height i or larger. The probability that a node has height b is 0.5” (0.5 can
be replaced by any number between 0 and 1.0, to implement time/space trade-offs).
As a consequence, we expect to process only a few forward pointers until we drop
down a level; since we will have roughly log N levels, we obtain O(log N ) expected
running time per operation. 7 N

To make this bound a worst-case bound, we need to guarantee that only a
constant number of forward pointers need to be examined until we can drop down
to a lower level. To do this, we add a balancing condition. First we need two
definitions. ; l
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pEFINTION: Two elements are linked if there exists at least one pointer going from
one to anather.

pEFINITION: The gap size between two elements linked at height 4 is equal to the
number of elements of henght b — 1 between them.

A 1-2-3 deterministic skip list satisfies the property that every gap (except
possibly the zero gap between the header and tail) is of size 1, 2, or 3. As an
example, Figure 12.18 shows a 1-2-3 deterministic skip list. There are two gaps of
size 3: The first is the three elements of height 1 that are between 25 and 45, and
the second is the three elements of height 2 between the list header and tail. The tail
node contains o its presence simplifies the algorithms and also makes it easier to
define the notion of a gap at the end of the list.

Clearly, ofily a constant number of pointers are traversed along any level before
we drop to a lower level. Consequently, the searching time is O(log N) in the worst
case.

To perform insertion, we must make sure that when a new node of height b is
added, it doesn’t create a gap of four height # nodes. This turns out to be simple.
We adopt a top-down strategy that is similar to what was done with red black trees.

Let us suppose we are on level L and are about to drop one level. If the gap we
are about to drop into has size 3, then we raise the middle item in the gap to have
height L, thereby forming two gaps of size 1. Since this eliminates gaps of size 3 on
the way toward the insertion, we know that the insertion is safe, as is any increase
of middle item heights.

As an example, Figure 12.19 shows the insertion of item 27 into the deterministic
skip list in Figure 12.18. At the header node, we are about:to drop from level 3 to
level 2. Since the drop would be into a 3 gap, the middle item (25) is raised to height
3 and spliced in. The search at level 2 takes us to 25, at which point we need to
drop to level 1. Again we see a 3 gap, so 35 is raised to height 2. The result is shown
in Figure 12.20. When it is time to insert 27, it is spliced into the list, as shown in
Figure 12.21.

Difficulty in deletion occurs- with gaps of size 1. When we see that we are
about to drop intp a 1 gap, we enlarge it, either by borrowing from a neighbor
(if it is not a 1 gap) or by lowering the height of the node that separates the gap
from the neighbor. Since both of these are gaps of size 1, the result is a 3 gap. The
code is a bit more complex than this description-because there are several cases to
deal w1t.h

Figure 12,18 A 1-2-3 deteﬁrﬁnisﬁé skip list

Jljh
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Figure 12.19 Insertion of 27: first, a gap of three height 2
nodes is split by raising 25
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Figure 12.21 Insertion of 27: ﬁnally, 27 is inserted as height
1 node

How is all of this implemented? After we describe all the details, we will see
that the amount of code is actually quite small.

The first 1mportant detajl is that when we promote a height » node to height
b + 1, we can’t spend the O(b) time that would be used to copy b pomters to a new
array. Otherwise, thc time bound would be O(log N) for insertion, A reasonable
method is to represent the b forward pointers in a height » node by a linked list.
Since we go down levels, the linked list for a node would start with the level b
forward pointer and end with the level 1 forward pointer.

The second optimization, is more tricky, and could cost space. Instead of storing
a node as an item and a linked list of forward pointers, we store a linked list of
forward pointer, forward item pairs. "The easiest way to see what this means is to
look at Figure 12.22, which is anor.her representation of Figure 12.21. We'll use the
term abstract or logical representation to describe Figure 12.21 and refer to Figure
12.22 as the (actual) implementation. ,

First, notice that the skyline (i.., heights as we scan from left to right) of both
the abstract representation and actual implementation are identical except that the
tail node has been removed. In our implementation, each node maintains a pointer
that allows us to descend a level, a pointer to the next node on the same level, and
the item that is logically stored in that next item (as shown in our original abstract
description).
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Figure 12.22 Linked list implementation of 1-2-3 deter-
ministic skip list in Figure 12.21

Notice that some items appear more than once: for instance, 25 appears in three
places. Indeed, if a node has height » in the abstract representation, its item will
appear in b places in our actual implementation. There are important consequences
and surprising results that we will explain after we provide an implementation.

The basic node consists of a key and two pointers. To make the coding faster
and more simple, we have used the tail node; if it is impossible or undesirable
to assign ®, then some other mechanism must be used. We’ll also have a sentinel
for the header, and a sentinel for the bottom,.to replace the NULL pointers, The
declarations and an initialization routine are shown in Figure 12.23.

The searching function is the same as for randomized skip lists. Figure 12.24
shows that if we don’t have a match, then we either go down or right, depending on
the result of a comparison. Insertion, shown in Figure 12.25, is greatly simplified by
the sentinels. As we can see by some of the outrageous pomter trails, if we had to
test each pointer against NULL, we would easily triple’the size of the code.

As Figure 12.25 indicates, the code for deterministic skip”list insertion is
somewhat shorter, with many fewer cases than for the red black tree. The _price we
pay seems to be space: In the worst case we have 2N fiodes that contain two poiriters
and an item. For a red black tree, we have N nodes that centam two pointers, an item,
and a color bit. So we might be usmg twice as much space. However, things aren’t
necessarily that bad. First, experiments suggest that on average the deterministic
skip list has about 1.57N nodes. Second, in some ca’ses, the deterministic sklp list
actually uses less space than the red black tree. '

Here’s a real-life example. On a 32-bit machme, pomters and’ mtegers dre 4
bytes. On some systenis, including some versions of UNIX, memory is allocated i in
chunks that are powers of 2, but 4 bytes of that chunk are used by the memory
management routines. Thus a request for 12 bytes i$ filled by a 16-byte chunk: 12
bytes for‘the user and 4 bytes overhead. A request for 13 bytes, ‘however, must be
filled by a 32-byte chunk. So, in this case, a deterministic skip list will use 16 bytes
per node, and on average there are 1.57N nodes, so the total is typically about 2SN
bytes. The red black tree uses 32N bytes! This illustrates that on some machines an
extra bit is very expensive; this is one of the attractions of self-organizing structures.
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struct SkipNode

ElementType Element;
SkipList Right; '
SkipList Down;

b

static Position Bottom
static Position Tail

NULL; /* Needs initialization */
NULL; /* Needs initialization */

/* Initializationh proceduré'*/

SkipList
Initialize( void )

SkipList L;

if( Bottom == NULL )

{
Bottom = malloc( sizeof( struct SkipNode ) ),
if( Bottom == NULL )
FatalError( "Out of space!!!" );
Bottom->Right = Bottom->Down = Bottom;
Tail = malloc( sizeof( struct SkipNode ) );
if( Tail == NULL )
Fata]Error( "Out of space"' );
Tail->Element = Infinity;
Tail->Right = Tail;
} Lot

/* Create the header node */

L = malloc( sizeof( struct SkipNode ) );

ifC L == NULL ) )
FatalError( "Out ‘of space!!l!™ );

L->Element = Infinity;

L->Right = Tail;

L->Down = Bottom; **

return L;

} . . : R

Figure 12.23 Deterministic skip list: types and initial-
ization (none of this is part of the
header file)
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/* Return position of nede containing Item, */
/* or Bottom if not found */

Position
Find( ElementType Item, SkipList L )
{

Position Current = L;

Bottom->Element = Item;
while( Item != Current->Element )
if( Item < Current->Element )
Current = Current- >Down.
else
Current = Current->Right;

return Current;

}
Figure 12.24 Deterministic skip list: Find routine
Sk1pL1st
Insert( ElementType Item. SkipList L )
{

Position Current = L;
Position NewNode;

Bottom->Element = Item;
while( Current != Bottom )

while( Item > Current->Element )
Current = Current->Right;

/* If gap size is 3 or at bottom level */
/* and must insert, then promote the middie element *,
if( Current->Element >
Current->Down->Right->Right- >E1ement )
{

NewNode = malloc( sizeof( struct SkipNode ) );
if( NewNode == NULL ) .
FatalError( "Out of space!"" )
NewNode->Right = Current->Right;
NewNode->Down = Current->Down->Right->Right;
Current->Right = NewNode;
NewNode->Element = Current->Element; _
Current->Element = Current->Down->Right->Element;
}
else
Current = Current->Down;

}

Figure 12.25 Deterministic skip list: insertion
procedure
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}

/* Raise height of DSL if necessary */
if( L->Right != Tail )

{ NewNode = malloc( sizeof( struct SkipNode ) );
if( NewNode == NULL )
FatalError( "Out of space!!!" );
NewNode->Down = L;
NewNode->Right = Tail;
NewNode->Element = Infinity;
= NewNode; .
}
return L;

Figure 12.25 Deterministic skip list: insertion proce-
dure (continued)

25 . ,
P 0o
P
10 5 | | 35 | 45 | =
// Il // BEANI|
5 |10 1s| 20 25| |27 30| as| [40]as| , 5o -

Figure 12.26 Horizontal array implementation of Figure 12.22

The performance of deterministic skip lists seems to compare favorably with

red black trees. Whenlooking for improvement in the insertion time, the line of code

if( Current->Element > Cu [:rent—>de§nf>R'i ghtk->_B1' ghtlé'l eme}m& )

seefms to stand out;* if we store items in an array of up to three elements, the access of
the third item could be direct, rather than through two Right pointers. Figure 12.26
shows the resulting structure, which, ironically, bears strong resemblance to the
B-tree discussed in Chapter 4. This is known as thehorizontal drray implementation

-

*Indeed, the more obvnous test

Current->Element == Current- >Down->Ri ght->R'l ght‘->R'i ght—>E'I ement

v
k)

takes 20 percent longer on some systemsl
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of the 1-2-3 deterministic skip list. Just as there are higher-order B-trees, we can
have higher-order deterrninistic skip lists, in beth linked list and horizontal array
forms. Which of these methods is best remains to be studied, and may well depend
on the particular system and application.

o

12.4. AA-Trees

Because of a host of possible rotations, the red black tree is fairly tricky to code,
especially for deletion. The deterministic skip list requires somewhat less code, but
it is still quite tricky, as indicated by the three sentinels that are required. Deletion
in a deterministic skip list is certainly a nontrivial task. In this section we describe a
simple but competitive implementation of the binary B-tree, known as a BB-tree. A
BB-tree is a red black tree with one extra condition: A node may have at most one
red child. To make coding easier, weadopt a few rules.

1. First, we add the condition that only right children can be red. This eliminates
about half of the possible restructuring cases. It also eliminates an annoying
case in the deletion algorithm: if-an internal node has only one child, the
child must be a right child (that happens to be red), because a black left child
would violate condition 4 for red black trees. Thus, we can always replace
an internal node with the smallest node in its right subtree.

2. We code our procedures recursively.

3. Instead of storing a color bit with each node, we store information in a short
integer (for instance, eight bits). This information is the level of a node. The
level of a node is

¢ One if the node is a leaf.
o The level of its parent, if the node is red.
¢ One less than the level of its parent, if the node is black.

The result is an AA-tree. Figiire 12.27 shows the type declarations that are used
for an AA-tree. Once again, we use a sentinel to represent NULL.

If we translate the AA structure requirements from colors to levels, we see that
the left child must be exactly one level lower than its parent, and the right child may
be zero or one level lower than its parent (but not more).

A horizontal link is a' connection between a node and a child of equal levels;
the structure requirementsimandate that horizontal links are right pointers, and that
there may not be two consecutive horizontal links. Figure 12.28 shows a sample
AA-tree. Searching is done using the usual algorithm. Insertion of a-new item is
always done at the bottom level: However, two problems can result: insertion of;
a 2 would generate a left horizontal link, while insertion of 45 would create two
consecutive right horizontal links.

In both cases a single rotation fixes the problem: we remove left horizontal links

-by right rotations, and consecutive right horizontal links by a left rotation. These
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/* Returned for failures */ . ]
Position Nul1lNode = NULL; /* Needs more initialization */

struct AANode

ElementType Element;

AATree Left;
AATree Right;
int Level;
|5
AATree d

Initialize( void )

if( NullNode == NULL )
{
NullNode = malloc( sizeof( struct AANode ) );
if( NulINode == NULL )
FatalError( "Out of space!!!"™ );
NullNode->Left = NullNode->Right = NullNode;
Nul1Node->Level = 0;

return NullNode;

}

Figure 12.27 AA-trees: some type declarations and
initialization

procedures are called Skew and Split, respectively. Figure 12.29 shows the code for
these primitives. A Skew removes a left horizontal link, but may create consecutive
right horizontal links; thus we process Skew first, and then Split. After a Split, the
middle node R increases in level. This may cause problems for the original parent
of X by creating either a left horizontal node or consecutive right horizontal nodes;
both problems can be fixed by percolating up the Skew/Split strategy. This is done
automatically if we use recursion. Figure 12.30 depicts both procedures.

The actions taken to insert 45 in the AA-tree in Figure 12.28 are shown in
Figures 12.31 through 12.35. The insertion procedure is then only two lines longer
than an unbalanced implementation, as shown in Figure 12.36.

Figure 12.28 AA-tree resulting from insertion of 10, 85,
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55, 35

30

10 @
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/* If T's left child is on the same level as T, */
/* perform a rotation */

AATree
Skew( AATree T )

if( T->Left->Level == T->Level )
T = SingleRotateWithLeft( T );
return T;

}

/* If T's rightmost grandchild is on the same level, */
/* rotate right child up */

AATree
Split( AATree T )

if( T->Right->Right->Level == T->Level )

T = SingleRotateWithRight( T );
T->Level++;

}

return T;

}

Figure 12.29 AA-trees: Skew and Split procedures

Deletion is, of course, more complex, but since we removed many of the special
cases, the code is actually pretty reasonable. Recall, first of all, that if a node is not
a leaf, then it must have a right child. This means that when deleting a node, we
can always replace the node with the smallest child in-the right subtree, which is
guaranteed to be at level 1.

To help us out, we keep two static local variables DeletePtr and LastPtr. These
must be static because Remove is a recursive procedure. When we traverse a right
pointer, we adjust DeletePtr; because we call Remove recursively until we reach the
bottom (we don’t test for equality on the way down), we are guaranteed that if the
item to be removed is in the tree, DeletePtr will be pointing at the node that contains
it," LastPtr points at the leaf at which the search terminates. Because we don’t stop
until we reach the bottom, if the item is in the tree, LastPtr will point at the level 1
node that contains the replacement value, and must be removed from the tree.

When we reach the bottom of the tree, we perform step 2, which copies the
level 1 node value into the internal node and then calls free to remove the level 1
node. '

Nonleaf nodes check to see if their levels have been destroyed by a recursive
call, Let T be the current node. If the deletion has lowered the level of one of T's

*This technique can be used in the Find procedure to replace the three-way comparisons done at each
node with two-way comparisons at each node, plus one extra equality test at the bottom.
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(Right Rotation)

(579 29

Figure 12.31 After inserting 45 into sample tree
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Figure 12.32 After Split at 35
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Figure 12.33 After Skew at 50

481



482 CHAPTER 12/ADVANCED DATA STRUCTURES AND IMPLEMENTATION

Figure 12.35 Final tree after Skew 70 and Split 30

AATree
Insert( ElementType Item, AATree T )
{ .

if( T == NullNode )

{
/* Create and return a one-node tree */
T = malloc( sizeof( struct AANode ) );
If( T == NULL )
FatalError( "Out of space!!l" );
else
{
T->Element = Item; T->Level = 1;
T->Left = T->Right = NullNode;
}
return T;
}
else

if( Item < T->Element )

T->Left = Insert( Item, T->Left );
else
if( Item > T->Element )

T->Right = Insert( Item, T->Right ); -

/* Otherwise it's a duplicate; do nothing */

T =Skew( T);
T = Split( T );
return T;

}
Figure 12.36 AA-trees: insertion procedure
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children (only the child entered by the recursive call could actually be affected, but
for simplicity, we don’t keep track of it) to two less than T’s level, then T’s level
needs to be lowered also. Furthermore, if T has a right red child, T’s right child must
also have its level lowered. At this point, we could have six nodes on the same level:
T, T’s right red child R, R’s two children, and those children’s right red children.
Figure 12.37 shows the simplest possible scenario.

After node 1 is removed, node 2 and thus node 5 become level 1 nodes. First
we must fix the left horizontal link that is now introduced between nodes 5 and 3.
This essentially requires two rotations (one between nodes 5 and 3, and then one
between nodes 5 and 4). In this case, the current node, T, is not involved. On the
other hand, if a deletion came from the right side, then T’s left node could suddenly
become horizontal; that would also require a similar double rotation (starting at
T). To avoid testing all these cases, we just call Skew three times. Once we’ve done
that, two calls to Split suffice to rearrange the horizontal edges. The entire deletion
routine is shown in Figure 12.38. All in all, this is a relatively simple data structure
to code.

Figure 12.37 When 1is deleted, all nodes become level 1, introducing horizontal
left links. Getting links to point right is accomplished by three calls
to Skew. Two calls to Split remove consecutive horizontal links.

2 5

Figure 12.38 AA-Trees: deletion procedure

AATree
Remove( ElementType Item, AATree T )
{

static Position DeletePtr, LastPtr;

if( T 1= NullNode )
{

/* Step 1: Search down tree */

/* set LastPtr and DeletePtr */

LastPtr = T; : . :

3fC Item < T->Element )

T->Left = Remove( Item, T->Left );
else ‘

{

DeletePtr = T; N
T->Right = Remove( Item, T->Right );
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/* Step 2: If at the bottom of the tree and */
/* item is present, we remove it */
if( T == LastPtr )

"if( DeletePtr != NuTINode &&
Item == DeletePtr->Element )
{

DeletePtr->Element = T->Element;
DeletePtr = NuliNode;

T = T->Right;

free( LastPtr );

/* Step 3: Otherwise, we are not at the bottom; */
/* rebalance */
else
if( T->Left->Level < T->Level - 1 ||
T->Right->Level < T->Level - 1)

if( T->Right->Level > --T->Level )
T->Right->Level = T->Level;
T = Skew( T );
T->Right = Skew( T->Right );
T->Right->Right = Skew( T->Right->Right );
T=Split(T);
T->Right = Split( T->Right );
}
}
return T;

}

Figure 12.38 AA-Trees: deletion
procedure (continued)

12.5. Treaps

Our last type of binary search tree, known as the treap, is probably the simplest
of all. Like the skip list, it uses random numbers and gives O(log N) expected time
behavior for any input. Searching time is identical to an unbalanced binary search
tree (and thus slower than balanced search trees), while insertion time is only slightly
slower than a recursive unbalanced binary search tree implementation. Although
deletion is much slower, it is still O(log N') expected time.

The treap is so simple that we can describe it without a picture. Each node
in the tree stores an item, a left and right pointer, and a priority that is randomly
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assigned when the node is created. A treap is a binary search tree with the property
that the node priorities satisfy heap order: any node’s priority must be at least as
large as its parent’s.

A collection of distinct items each of which has a distinct priority can only be
represented by one treap. This is easily deduced by induction, since the node with
the lowest priority must be the root. Consequently, the tree is formed on the basis of
the N'! possible arrangements of priority instead of the N'! item orderings. The type
declarations are straightforward, requiring only the addition of the Priority field.
The sentinel NullNode will have priority of =, as shown in Figure 12.39.

Insertion irﬁo the treap is simple: After an item is added as a leaf, we rotate it
up the treap until its priority satisfies heap order. It can be shown that the expected
number of rotations is less than 2. After the item to be deleted has been found, it
can be deleted by increasing its priority to « and rotating it down through the path
of low-priority children. Once it is a leaf, it can be removed. The routines in Figure
12.40 and Figure 12.41 implement these strategies using recursion. A nonrecursive
implementation is left for the reader (Exercise 12.17). For deletion, note that when
the node is logically a leaf, it still has NullNode as both its left and right children.
Consequently, it is rotated with the left child. After the rotation, T is Nu//Node, and
the left child can be freed. Note also that our implementation assumes that there are
no duplicates; if this is not true, then the Remove could fail (why?).

The treap is particularly easy to implement because we never have t6 worry
about adjusting the priority field. One of the difficulties of the balanced tree
approaches is that it is difficult to track down errors that result from failing to
update balance information in the course of an operation. In terms of total lines
for a reasonable insertion and deletion package, the treap, especially a nonrecursive
implementation, seems like the hands-down winner.

Figure 12.39 Initialization for treaps

Treap
Initialize( void )
{
if( NuliNode == NULL )
{
Nul1Node = malloc( sizeof( struct TreapNode ) );
if( NullNode == NULL )

FatalError( "Out of space!!!l" );
NullNode->Left = NullNode->Right = NullNode;
NulINode->Priority = Infinity;

}

return NullNode;
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Treap
Insert( ElementType Item, Treap T )

{

}

if( T == NullNode )

{
/* Create and return a one-node tree */
T = malloc( sizeof( struct TreapNode ) );
if( T == NULL )
FatalError( "Out of space!!!" ):.
else >
T->Element = Item; T->Priority = Random( );
T->Left = T->Right = NuliNode;.
}
}
else
if( Item < T->Element )
{
T->Left = Insert( Item, T->Left );
if( T->Left->Priority < T->Priority )
T = SingleRotateWithLeft( T );
}
else :
if( Item > T->Element )
{
T->Right = Insert( Item, T->Right );
if( T->Right->Priority < T->Priority )
T = SingleRotateWithRight( T );
}

/* Otherwise it's a duplicate; do nothing */

return T;

Figure 12.40 Treaps: insertion routine
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Treap
Remove( ElementType Item, Treap T )

if( T != NullNode )

{
if( Item < T->Element )
T->Left = Remove( Item, T->Left );
else
if( Item > T->Element )
T->Right = Remove( Item, T->Right );
else
{
/* Match found */
if( T->Left->Priority < T->Right->Priority )
T = SingleRotateWithLeft( T );
else
T = SingleRotatewithRight( T );
if( T !'= NullNode ) /* Continue on down */
' T = Remove( Item, T );
else
{
/* At a leaf */
free( T->Left );
T->Left = NullNode;
}
}
}
return T;

}

Figure 12.41 Treaps: deletion procedure

12.6. k-d Trees

Suppose that an advertising company maintains a database and needs to generate
mailing labels for certain constituencies. A typical request might require sending out
a mailing to people who are between the ages of 34 and 49 and whose annual income
is between $100,000 and $150,000. This problem is known as a two-dimensional
range query. In one dimension, the problem can be solved by a simple recursive
algorithm in O(M + log N) average time, by traversing a preconstructed binary
search tree. Here M is the number of matches reported by the query. We would like
to obtain a similar bound for two or more dimensions.

The two-dimensional search tree has the simple property that branching on
odd levels is done with respect to the first key, and branching on even levels is
done with respect to the second key. The root is arbitrarily chosen to be an odd
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Figure 12,42 Sample 2-d tree

level. Figure 12.42 shows a 2-d tree. Insertion into a 2-d tree is a trivial extension of
insertion into a binary search tree: as we go down the tree, we need to maintain the
current level. To keep our code simple, we assume that a basic item is an array of
two elements. We then need to toggle the level between 0 and 1. Figure 12.43 shows
the code to perform an insertion. We use recursion in this section; a nonrecursive

Figure 12.43 Insertion into 2-d trees

static KdTree
Recursivelnsert( ItemType Item, KdTree T, int Level )

{
Aif( T == NULL )
{ .
T = malloc( sizeof( struct KdNode ) ):;
if( T == NULL ) .
FatalError( "Out of space!!!"” );
T->Left = T->Right = NULL;
T->Datal 01 = Item[ O ];
T->Data[ 1 ] = Item[ 1 ];
}
else
if( Item[ Level ] < T->Data[ Level ] )
T->Left = Recursivelnsert( Item, T->Left, !Level );
else
T->Right = RecursiveInsert( Item, T->Right, !Level );
return T;
}
KdTree
Insert( ItemType Item, KdTree T )
{ N

return Recursivelnsert( Item, T, 0 );

}
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implementation that would be used in practice is straightforward and left as Exercise
12.23. One difficulty is duplicates, particularly since several items can agree in one
field. Our code allows duplicates, and always places them in right branches; clearly
this can be a problem if there are too many duplicates.

A moment’s thought will convince you that a randomly constructed 2-d tree has
the same structural properties as a random binary search tree: the height is O(log N)
on average, but O(N) in the worst case. ,

Unlike binary search trees, for which clever O(log N') worst-case variants exist,
there are no schemes that are known to guarantee a balanced 2-d tree. The problem
is that such a scheme would likely be based on tree rotations, and tree rotations
don’t work in 2-d trees. The best one can do is to periodically rebalance the tree
by reconstructing a subtree, as described in the exercises. Similarly, there are no
deletion algorithms beyond the obvious lazy deletion strategy. If all of the items
arrive before we need to process queries, then we can construct a perfectly balanced
2-d tree in O(N log N ) time; we leave this as Exercise 12.21c.

Several kinds of queries are possible on a 2-d tree. We can ask for an exact
match, or a match based on one of the two keys; the latter type of request is a partial
match query. Both of these are special cases of an (orthogonal) range query.

An orthogonal range query gives all items whose first key is between a specified
set of values and whose second key is between another specified set of values. This
is exactly the problem that was described in the introduction to this section. A range
query is easily solved by a recursive tree traversal, as shown in Figure 12.44. By
testing before making a recursive call, we can avoid unnecessarily visiting all nodes.

To find a specific item, we can set Low equal to High equal to the item we are
searching for. To perform a partial match query, we set the range for the key not
involved in the match to —o to . The other range is set with the low and high point
equal to the value of the key involved in the match.

An insertion or exact match search in a 2-d tree takes time that is proportional
to the depth of the tree, namely, O(log N) on average and O(N) in the worst case.
The running time of a range search depends on how balanced the tree is, whether
or not a partial match is requested, and how many items are actually found. We
mention three results that have been shown.

For a perfectly balanced tree, a range query could take O(M + JN) time in
the worst case, to report M matches. At any node, we may have to visit two of the
four grandchildren, leading to the equation T(N) = 2T(N/4) + O(1). In practice,
however, these searches tend to be very efficient, and even the worst case is not poor
because for typical N, the difference between jI‘—I and log N is compensated by the
smaller constant that is hidden in the Big-Oh notation. o

For a randomly constructed tree, the average running time of a partial match
queryis O(M + N¢), wherea = (-3 + ‘/1_7 )/2 (see below). A recent, and somewhat
surprising, result is that this essentially describes the average running time of a range
search of a random 2-d tree.

For k dimensions, the same algorithm works; we just cycle through the keys
at each level. However, in practice the balance starts getting worse because typ-
ically the effect of duplicates and nonrandom inputs becomes more. pronounced.
We leave the coding details as an exercise for the reader, and mention the analyti-
cal results: For a perfectly balanced tree, the worst-case running time of a range query
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/* Print items satisfying */
/* Low[ 0 ] <= Item[ 0 ] <= High[ 0 ] and */
/% Low[ 1] <= Item[ 1 ] <= High[ 1] */

static void )
RecPrintRange( ItemType Low, ItemType High,
KdTree T, int Level )

if( T t= NULL )

{
if( Low[ 0 ] <= T->Data[ 0 ] &&
T->Data[ 0 ] <= Highf 0 ] &
Low[ 1 ] <= T->Data[ 1 ] &&
T->Data[ 1 ] <= Highf 1] )
PrintItem( T->Data );
if( Low[ Level ] <= T->Data[ Level ] )
RecPrintRange( Low, High, T->Left, !Level );
if( High[ Level ] >= T->Data[ Level ] )
RecPrintRange( Low, High, T->Right, lLevel );
}
}
void .

PrintRange( ItemType Low, ItemType High, KdTree T )

RecPrintRange( Low, High, T, 0 );
}

Figure 12.44 2-d trees: range search

is O(M + kN'"V&). In a randomly constructed k-d tree, a partial match query that
involves p of the k keys takes O(M + N *), where a is the (only) positive root of

2+ a)’(1 + a) P =2k

Computation of a for various p and k is left as an exercise; the value for & = 2
and p = 1 is reflected in the result stated above for partial matching in random 2-d
trees. ,

Although there are several exotic structures that support range searching, the
k-d tree is probably the simplest such structute that achieves respectable running
times, ,

12.7. Pairing Heaps

The last data structure we examine is the pairing heap. The analysis of the pairing
heap is still open, but when DecreaseKey operations are needed, it seems to
outperform other heap structures. The most likely reason for its efficiency is its
simplicity. The pairing heap is represented as a heap ordered tree. Figure 12.45
shows a sample pairing heap.
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The actual pairing heap implementation uses a left child, right sibling represen-
tation as discussed in Chapter 4. The DecreaseKey operation, as we will see, requires
that each node contain an additional pointer. A node that is a leftmost child contains
a pointer to its parent; otherwise the node is a right sibling, and contains a pointer
to its left sibling. We’ll refer to this field as the Prev field. The type declarations are
omitted for brevity; they are completely straightforward. Figure 12.46 shows the
actual representation of the pairing heap in Figure 12.45.

We begin by sketching the basic operations. To merge two pairing heaps, we
make the heap with the larger root a left child of the heap with the smaller root.
Insertion is, of course, a special case of merging. To perform a DecreaseKey, we
lower the value in the requested node. Because we are not maintaining parent
pointers for all nodes, we don’t know if this violates the heap order. Thus we cut the
adjusted node from its parent and complete the DecreaseKey by merging the two
heaps that result. To perform a DeleteMin, we remove the root, creating a collection
of heaps. If there are ¢ children of the root, then ¢ — 1 calls to the merge procedure

will reassemble the heap. The most important detail is the method used to perform

the merge and how the ¢ — 1 merges are applied.

Figure 12.47 shows how two subheaps are combined. The procedure is gener-
alized to allow the second subheap to have siblings. As we mentioned earlier, the
subheap with the larger root is made a leftmost child of the other subheap. The

Figure 12.45 Sample pairing heap: abstract representation
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Fss-

Lo

Figure 12.47 CompareAndLink merges two subheaps

code is straightforward and shown in Figure 12.48. Notice that we have several
instances in which a pointer is tested against NULL before assigning its Prev field;
this suggests that perhaps it would be useful to have a NullNode sentinel, which was
customary in this chapter’s search tree implementations. .

The Insert and DecreaseKey operations are, then, simple implementations of the
abstract description. DecreaseKey requires a Position object. Since an item’s Position
is determined (irrevocably) when it is first inserted, Insert sends the Position back to
the caller through the third parameter, Loc, which is passed by reference. The code
is shown in Figure 12.49. Our routine for DecreaseKey prints a warning message if
the new key value is not smaller than the old. If this is the case, the resulting structure
might not obey heap order. The basic DeleteMin procedure follows directly from
the abstract description and is shown in Figure 12.50.

The devil, of course, is in the details: How is CombineSiblings implemented?
Several variants have been proposed, but none has been shown to provide the same
amortized bounds as the Fibonacci heap. Even so, the method coded in Figure 12.51
always seems to perform as well as or better than other heap structures, including
the binary heap, for the typical graph theory uses that involve a host of DecreaseKey
operations.

This method, known as two-pass merging, is the simplest and most practical of
the many variants that have been suggested. We first scan left to right, merging pairs
of children.* After the first scan, we have half as many trees to merge. A second scan
is then performed, right to left. At each step we merge the rightmost tree remaining
from the first scan with the current merged result. As an example, if we have
eight children, ¢; through cs, the first scan performs the merges ¢; and ¢, ¢3 and
¢4, ¢s and cg, and ¢7 and cg. As a result we obtain d1, d3, d3, and d4. We perform the

*We must be careful if there is an odd number of children. When that happens, we merge the last child
with the result of the rightmost merge to complete the first scan.
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/* This is the basic operation to maintain order */

/* Links First and Second together to satisfy heap order */
/* Returns the resulting tree */

/* First is assumed NOT NULL */

/% First->NextSibling MUST be NULL on entry */

Position
CompareAndLink( Position First, Position Second )

if( Second == NULL )
return First;
else
if( First->Element <= Second->Element )
{
/* Attach Second as the leftmost child of First */
Second->Prev = First;
First->NextSibling = Second- >NextS1b11ng,
if( First->NextSibling != NULL )
First->NextSibling->Prev = First;
Second->NextSibling = First->LeftChild;.
if( Second->NextSibling != NULL )
Second->NextSibling->Prev = Second;
First->LeftChild = Second; L
return First; o

}

else

{ :
/% Attach First as the 1eftmost child of Second */
Secend->Prev = First->Prev;
First-»>Prev = Second; ; E
First->NextSibling = Second4>LeftChi1d:
if{ First->NextSibling != NULL )

First->NextSibling->Prev = First;

Second->LeftChild = First;
return Second;

}

}

Figure 12.48 Pairing heaps: routine to merge two
subheaps
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/* Insert Item into pairing heap H */

/* Return resulting pairing heap */

/* A pointer to the newly allocated node */

/* is passed back by reference and accessed as *Loc */

PairHeap
Insert( ElementType Item, PairHeap H, Position *Loc )
{

Position NewNode;

NewNode = malloc( sizeof( struct PairNode ) );
if( NewNode == NULL )

FatalError( "Out of space!!!" );
NewNode->Element = Item;
NewNode->LeftChild = NewNode->NextSibling = NULL;
NewNode->Prev = NULL; .

*Loc = NewNode;
if( H ==-NULL )
return NewNode;
else
return CompareAndLink( H, NewNode );

/* Lower item in Position P by Delta */

PairHeap
DecreaseKey( Position P, ElementType Delta, PairHeap H )

if( Delta < 0 )
Error( "DecreaseKey called with negative Delta" );

P->Element -= Delta;
ifCP==H)
return H;

if( P->NextSibling != NULL )
P->NextSibling->Prev = P->Prev;

if( P->Prev->LeftChild == P )
P->Prev->LeftChild = P->NextSibling;

else
P->Prev->NextSibling = P->NextSibling;

P->NextSibiing = NULL;
return CompareAndLink( H, P );
}

Figure 12.49 Pairing heaps: Insert and DecreaseKey
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PairHeap )
DeleteMin( ElementType *MinItem, PairHeap H )

{
Position NewRoot = NULL;

if( IsEmpty{ H ) )
Error( "Pairing heap 1is empty!” );
else
{
*MinItem = H->Element;
if( H->LeftChild != NULL )
NewRoot = CombineSiblings( H->LeftChild );
free( H );
}

return NewRoot;

}

Figure 12.50 Pairing heap DeleteMin

/* Assumes FirstSibling is NOT NULL */

PairHeap

CombineSiblings( Position FirstSibling )

A .
static Position TreeArray[ MaxSiblings 1;
int i, j, NumSiblings;

/* If only one tree, return it */
if( FirstSibling->NextSibling == NULL )
return FirstSibling;

/* Place each subtree in TreeArray */
for( NumSiblings = 0; FirstSibling != NULL; NumSiblings++ )

{
TreeArray[ NumSiblings ] = FirstSibling;
FirstSibling->Prev->NextSibling = NULL; /* Break links */
FirstSibling = FirstSibling->NextSibling;

}

TreeArray[ NumSiblings ] = NULL;

/* Combine the subtrees two at a time, */
/* going left to right */
for( i = 0; i + 1 < NumSiblings; i += 2 )
TreeArray[ i ] = CompareAndLink(
TreeArray[ i ], TreeArray[ 1 + 1] );

Figure 12.51 Pairing heaps: two-pass merging
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/* j has the result of the last CompareAndLink */
/* If an odd number! of trees, get the .last one */
j=1-2;
if( j == NumS1b11ngs -3)
TreeArray[ j ] = CompareAndLmk(
TreeArray[ j 1, TreeArray[ j + 2 1 );

/* Now go right to left, merging last tree with */
/* next to last. The result becomes the new last */
for( ; j>=2; 3 -=2)
TreeArray[ j - 2 ] = CompareAndL'ink(
TreeArray[ j - 2 J, TreeArray[ j 1 ):

return TreeArray[ 0 ];

}

Figure 12.51 Pairing heaps: two-pass merging (continued)

second pass by merging d3 and d4; d> is then merged with that result, and then d;
is merged with the result of the previous merge.

Our implementation requires an array to store the subtrees. In the worst case,
N — 1 items could be children of the root, so this array must be large.

Other merging strategies are discussed in the exercises. The only simple merging
strategy that is easily seen to be poor is a left-to-right single-pass merge (Exercise
12.35). The pairing heap is a good example of “simple is better” and seems to be
the method of choice for serious applications requiring the DecreaseKey or Merge
operation.

Summary

In this chapter, we’ve seen several efficient variations of the binary search tree.
The top-down splay tree provides O(log N') amortized performance, the treap gives
O(log N) randomized performance, and the red black tree, deterministic skip list,
and AA tree all give O(log N ) worst-case performance for the basic operations. The
trade-offs between the various structures involve code complexity, ease of deletion,
and differing searching and insertion costs. It is difficult to say that any one structure
is a clear winner. Recurring themes include tree rotations and the use of sentinel
nodes to eliminate many of the annoying tests for NULL pointers that would
otherwise be necessary. The k-d tree provides a practical method for performing
range searches, even though the theoretical bounds are not optimal.

Finally, we described and coded the pairing heap, which seems to be the
most practical mergeable priority queue, especially when DecreaseKey operations
are required. Unfortunately, the empirical results have not yet been confirmed
analytically.



Exercises

12.1

*¥12.2

12.3

12.4

12.5
12.6

12.7

12.8

12.9

12.10
*12.11

12,12
12.13
12.14

12.15

12.16

12.17

12.18

**12.19

Prove that the amortized cost of a top-down splay is O(log N).

Prove that there exist access sequences that require 2log N rotations per
access for bottom-up splaying. Show that a similar result holds for top-down

splaying,.
Modify the splay tree to support queries for the kth smallest item. How
would this be done in a deterministic skip list?

Compare, empirically, the simplified top-down splay with the originally
described top-down splay.

Write the deletion procedure for red black trees.

Prove that the height of a red black tree is at most 2log N, and that this
bound cannot be substantially lowered.

Show that every AVL tree can be colored as a red black tree. Are all red black
trees AVL?

Show that a 1-2-3 deterministic skip list can be represented as a 2-3-4 tree,
with items at internal nodes as well as leaves.

What happens if we try to insert an item that is already in the deterministic
skip list?
Show that at most 2N nodes are used in a 1-2-3 deterministic skip list.

In C, we can represent each abstract node as a dynamically allocated array of
forward pointers, instead of a linked list of pointers. Show how to implement

_a 1-2-3 deterministic skip list in this scheme and maintain the O(logN)

bound for each operation.
Write the deletion procedure for a 1-2-3 deterministic skip list.
Prove that the algorithm for deletion in AA-trees is correct.

Give a nonrecursive top-down implementation of AA-trees. Compare the
implementation with the text’s for simplicity and efficiency.

Write the Skew and Split procedures recursively, so that only one call of each
is need for deletion.

How many fewer lines of code than the BB-tree does the AA-tree use? Does
this make AA-trees faster?

Implement the insertion routine for treaps nonrecursively by maintaining a
stack. Is it worth the effort?

We can make treaps self-adjusting by using the number of accesses as a
priority and performing rotations as needed after each access. Compare
this method with the randomized strategy. Alternatively, genérate a random
number each time an item X is accessed. If this number is smaller than
X’s current priority, use it as X’s new priority (performing the appropriate
rotation).

Show that if the items are sorted, then a treap can be constructed in linear
time, even if the priorities are not sorted.
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12.20

12.21

12.22

12.23

12.24

12.25

12.26

12.27

12.28

12.29

Implement some of the tree structures without using the Nul[Node sentinel.
How much coding effort is saved by using the sentinel?

Suppose we store, for each node, the number of NULL pointers in its subtree;
call this the node’s weight. Adopt the following strategy: If the left and right
subtrees have weights that are not within a factor of 2 of each other, then
completely rebuild the subtree rooted at the node. Show the following:

a. We can rebuild a node in O(S), where S is the weight of the node.
b. The algorithm has amortized cost of O(log N) per insertion.

c. We can rebuild a node in a k-d tree in O(S logS) time, where S is the
weight of the node.

d. We can apply the algorithm to k-d trees, at a cost of O(log’ N) per
insertion.

Suppose we call SingleRotateWithLeft on an arbitrary 2-d tree. Explain in
detail all the reasons that the result is no longer a usable 2-d tree.

Implement the insertion and range search for the k-d tree. Do not use
recursion.

Determine the time for partial match query for values of P corresponding to
k =3,4,and .

For a perfectly balanced k-d tree, derive the worst-case running time of a
range query that is quoted in the text.

The 2-d heap is a data structure that allows each item to have two individual
keys. DeleteMin can be performed with respect to either of these keys. The
2-d heap is a complete binary tree with. the following order property: For
any node X at even depth, the item stored at X has the smallest key #1 in
its subtree, while for any node X at odd depth, the item stored at X has the
smallest key #2 in its subtree.

Draw a possible 2-d heap for the items (1,10), (2,9), (3,8), (4,7), (5,6).
How do we find the item with minimum key #1?

How do we find the item with minimum key #2?

Give an algorithm to insert a new item into the 2-d heap.

Give an algorithm to perform DeleteMin with respect to either key.
Give an algorithm to perform FixHeap in linear time.

Generalize the preceding exercise to obtain a k-d heap, in which each item can
have k individual keys. You should be able to obtain the following bounds:
Insert in O(log N), DeleteMin in O(2%log N ), and FixHeap in O(kN).

Show that the k-d heap can be used to implement a double-ended priority
queue.

Abstractly, generalize the k-d heap so that only levels that branch on key 1
have two children (all others have one).

a. Do we need pointers?

b. Clearly, the basic algorithms still work; what are the new time bounds?

"m0 o0 oW
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12.30 Use a k-d tree to implement DeleteMin. What would you expect the average
running time to be for a random tree?

12.31 Use a k-d heap to implement a deque (Exercise 3 26) that also supports
DeleteMin.

12.32 Implement the pairing heap with a NullNode sennnel.

*12.33 Show that the amortized cost of each operation is O(log N) for the pairing

heap algorithm in the text.

12.34 An alternative method for CombineSiblings is to place all of the siblings on a
queue, and repeatedly Dequeue and merge the first two items on the queue,
placing the result at the end of the queue. Implement this variation.

12.35 Show that using a stack instead of a queue in the previous exercise is bad,
by giving a sequence that leads to Q(N) cost per operation. This is the
left-to-right single-pass merge.

12.36 Without DecreaseKey, we can remove parent pointers. How competitive is
the result with the skew heap?

References
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black tree algorithm is from [16]; a more accessible description can be found in
[26]. An implementation of top-down red black trees without sentinel nodes is given
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in [12].

1.
2,
3. A. Andersson, “Balanced Search Trees Made Simple,” Proceedings on the Third Workshop

10.

11

13.

14,
15.

16.
17.
18.

19.
20.
21.
22,

23.

A. Andersson, “A Note on Searching a Binary Search Tree,” Software—-Practtce and
Experience, 21 (1991), 1125-1128.
A. Andersson, “General Balanced Trees,” Journal of Algorithms, to appear.

on Algorithms and Data Structures (1993), 61-71.

. C. Aragon and R. Seidel, “Randomized Search Trees,” Proceedings of the Thirtieth

Annual Symposium on Foundations of Computer Science (1989), 540-545.

. J. L. Baer and B. Schwab, “A Comparison of Tree-Balancing Algorithms,” Communica-

tions of the ACM, 20 (1977), 322-330.

. R. Bayer, “Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms,”:

Acta Informatica, 1 (1972), 290-306.

. ]. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,”

Communications of the ACM, 18 (1975), 509-517.

. ]. L. Bentley and J. H. Friedman, “Data Structures for Range Searching,” Computmg

Surveys, 11 (1979), 397-409.

. H. Chang and S. S. Iyengar, “Efficient Algorithms to Globally Balance a Binary Search

Tree,” Communications of the ACM, 27 (1984), 695-702.
P. Chanzy, “Range Search and Nearest Neighbor Search,” Master’s Thesis, McGill
University (1993).

. A. C. Day, “Balancing a Binary Tree,” Computer Journal, 19 (1976), 360-361.
. Y. Ding and M. A. Weiss, “The k-d Heap: An Efficient Multi-Dimensional Priority

Queue,” Proceedings of the Third Workshop on Algorithms and Data Structures (1993),
302-313.

P. Flajolet and C. Puech, “Partial Match Retrieval of Multidimensional Data,” Journal
of the ACM, 33 (1986), 371-407.

B. Flamig, Practical Data Structures inn C++, John Wiley, New York (1994).

M. L Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, “The Pairing Heap: A
New Form of Self-Adjusting Heap,” Algorithmica, 1 (1986), 111-129.

L. J. Guibas and R. Sedgewick, “A Dichromatic Framework for Balanced Trees,”
Proceedings of the Nineteenth Annual Symposium on Foundations of Computer Science
(1978), 8-21.

D. W. Jones, “An Empirical Comparison of Priority-Queue and Event-Set Implementa-
tions,” Communications of the ACM, 29 (1986), 300-311.

D. T. Lee and C. K. Wong, “Worst-Case Analysis for Region and Partial Region Searches
in Multidimensional Binary Search Trees and Balanced Quad Trees,” Acta Informatica,
9 (1977), 23-29.

W. A. Martin and D. N. Ness, “Optimizing Binary Trees Grown with a Sorting
Algorithm,” Communications of the ACM, 15 (1972), 88-93.

E. McCreight, “Priority Search Trees,” SIAM Journal of Computing, 14 (1985),257-276.
B. M. E. Moret and H. D. Shapiro, “An Empirical Analysis of Algorithms for Constructing
a Minimum Spanning Tree,” Proceedings of the Second Workshop on Algorithms and
Data Structures, (1991), 400-411.

J. L. Munro, T. Papadakis, and R. Sedgewick, “Deterministic Skip Lists,” Proceedings of
the Third Annual Symposium of Discrete Algorithms (1992), 367-375.

J. Nievergelt and E. M. Reingold, “Binary Search Trees of Bounded Balance,” SIAM
Journal on Computing, 2 (1973), 33-43,



24,

25.

26.
27.

28.

29.

30.

REFERENCES

M. H. Overmars and J. van Leeuwen, “Dynamic Multidimensional Data Structures Based
on Quad and K-D Trees,” Acta Informatica, 17 (1982), 267-28S.

T. Papadakis, Skip Lists and Probabilistic Analysis of Algoritbms, Ph.D. Dlssertanon,
University of Waterloo (1993).

R. Sedgewick, Algorithms in C, Addison-Wesley, Reading, Mass. (1990 ).

D. D. Sleator and R. E. Tarjan, “Self Adjusting Binary Search Trees,” Journal of the
ACM, 32 (1985), 652—686.

J. T. Stasko and J. S. Vitter, “Pairing Heaps: Experiments and Analysis,” Communications
of the ACM, 30 (1987), 234-249.

C. J. Stephenson, “A Method for Constructing Binary Search Trees by Making Insertions
at the Root,” International Journal of Computer and Information Science, 9 (1980),
15-29.

J. Vuillemin, “A Unifying Look at Data Structures,” Communications of the ACM, 23
(1980), 229-239.

501



	封面
	书名
	版权
	Adapter's Foreword
	PREFACE
	目录
	1 Introduction 1
	1.1 What's the Book About? 1
	1.2 A Brief Introduction to Recursion 3
	Summary 7
	Exercises 7
	References 8

	2 Algorithm Analysis 9
	2.1 Mathematical Background 9
	2.2 Model 12
	2.3 What to Analyze 12
	2.4 Running Time Calculations 14
	2.4.1 A Simple Example 15
	2.4.2 General Rules 15
	2.4.3 Solutions for the Maximum Subsequence Sum Problem 18
	2.4.4 Logarithms in the Running Time 22
	2.4.5 Checking Your Analysis 27
	2.4.6 A Grain of Salt 27

	Summary 28
	Exercises 29
	References 33

	3 Lists, Stacks, and Queues 35
	3.1 Abstract Data Types (ADTs) 35
	3.2 The List AnT 36
	3.2.1 Simple Array Implementation of Lists 37
	3.2.2 Linked Lists 37
	3.2.3 Programming Details 38
	3.2.4 Common Errors 43
	3.2.5 Doubly Linked Lists 45
	3.2.6 Circularly Linked Lists 46
	3.2.7 Examples 46
	3.2.8 Cursor Implementation of Linked Lists 50

	3.3 The Stack ADT 56
	3.3.1 Stack Model 56
	3.3.2 Implementation of Stacks 57
	3.3.3 Applications 65

	3.4 The Queue AnT 73
	3.4.1 Queue Model 73
	3.4.2 Array Implementation of Queues 73
	3.4.3 Applications of Queues 78

	Summary 79
	Exercises 79

	4 Trees 83
	4.1 Preliminaries 83
	4.1.1 Terminology 83
	4.1.2 Implementation of Trees 84

	4.2 Binary Trees 85
	4.2.1 Implementation 86
	4.2.2 Expression Trees 87
	4.2.3 Tree Traversals 90

	4.3 The Search Tree ADT Binary Search Trees 97
	4.3.1 MakeEmpty 97
	4.3.2 Find 97
	4.3.3 FindMin and FindMax 99
	4.3.4 Insert 100
	4.3.5 Delete 101
	4.3.6 Average-Case Analysis 103

	4.4 AVL Trees 106
	4.4.1 Single Rotation 108
	4.4.2 Double Rotation 111

	4.5 Splay Trees 119
	4.5.1 A Simple Idea (That Does Not Work) 12 0
	4.5.2 Splaying 12 2

	4.6 B-Trees 128
	Summary 133
	Exercises 134
	References 141

	5 Priority Queues (Heaps) 145
	5.1 Model 145
	5.2 Simple Implementations 146
	5.3 Binary Heap 147
	5.3.1 Structure Property 147
	5.3.2 Heap Order Property 148
	5.3.3 Basic Heap Operations 150
	5.3.4 Other Heap Operations 154

	5.4 Applications of Priority Queues 157
	5.4.1 The Selection Problem 157
	5.4.2 Event Simulation 159

	5.5 d-Heaps 160
	5.6 Leftist Heaps 161
	5.6.1 Leftist Heap Property 161
	5.6.2 Leftist Heap Operations 162

	5.7 Skew Heaps 168
	5.8 Binomial Queues 170
	5.8.1 Binomial Queue Structure 170
	5.8.2 Binomial Queue Operations 172
	5.8.3 Implementation of Binomial Queues 173

	Summary 180
	Exercises 180
	References 184

	6 Sorting 187
	6.1 Preliminaries 187
	6.2 Insertion Sort 188
	6.2.1 The Algorithm 188
	6.2.2 Analysis of Insertion Sort 189

	6.3 A Lower Bound for Simple Sorting Algorithms 189
	6.4 Shellsort 190
	6.4.1 Worst-Case Analysis of Shellsort 192

	6.5 Heapsort 194
	6.5.1 Analysis of Heapsort 196

	6.6 Mergesort 198
	6.6.1 Analysis of Mergesort 200

	6.7 Quicksort 203
	6.7.1 Picking the Pivot 204
	6.7.2 Partitioning Strategy 205
	6.7.3 Small Arrays 20 8
	6.7.4 Actual Quicksort Routines 208
	6.7.5 Analysis of Quicksort 209
	6.7.6 A Linear-Expected-Time Algorithm for Selection 213

	6.8 Sorting Large Structures 215
	6.9 A General Lower Bound for Sorting 216
	6.9.1 Decision Trees 217

	6.10 Bucket Sort and Radix Sort 219
	6.11 External Sorting 222
	6.11.1 Why We Need New Algorithms 222
	6.11.2 Model for External Sorting 222
	6.11.3 The Simple Algorithm 222
	6.11.4 Multiway Merge 224
	6.11.5 Polyphase Merge 225
	6.11.6 Replacement Selection 226

	Summary 227
	Exercises 229

	7 Hashing 235
	7.1 General Idea 235
	7.2 Hash Function 237
	7.3 Separate Chaining 239
	7.4 Open Addressing 244
	7.4.1 Linear Probing 244
	7.4.2 Quadratic Probing 247
	7.4.3 Double Hashing 251

	7.5 Rehashing 252
	7.6 Extendible Hashing 255
	Summary 258
	Exercises 259
	References 262

	8 The Disjoint Set AnT 265
	8.1 Equivalence Relations 265
	8.2 The Dynamic Equivalence Problem 266
	8.3 Basic Data Structure 267
	8.4 Smart Union Algorithms 271
	8.5 Path Compression 273
	8.6 Worst Case for Union-by-Rank and Path Compression 275
	8.6.1 Analysis of the Union/Find Algorithm 275

	8.7 An Application 281
	Summary 281
	Exercises 282
	References 283

	9 Graph Algorithms 285
	9.1 Definitions 285
	9.1.1 Representation of Graphs 286

	9.2 Topological Sort 288
	9.3 Shortest-Path Algorithms 292
	9.3.1 Unweighted Shortest Paths 293
	9.3.2 Dijkstra's Algorithm 297
	9.3.3 Graphs with Negative Edge Costs 306
	9.3.4 Acyclic Graphs 307
	9.3.5 All-Pairs Shortest Path 310

	9.4 Network Flow Problems 310
	9.4.1 A Simple Maximum-Flow Algorithm 311

	9.5 Minimum Spanning Tree 315
	9.5.1 Prim's Algorithm 316
	9.5.2 Kruskal's Algorithm 318

	9.6 Applications of Depth-First Search 3:21
	9.6.1 Undirected Graphs 322
	9.6.2 Biconnectivity 324
	9.6.3 Euler Circuits 328
	9.6.4 Directed Graphs 331
	9.6.5 Finding Strong Components 333

	9.7 Introduction to NP-Completeness 334
	9.7.2 The Class NP 336
	9.7.3 NP-Complete Problems 337

	Summary 339
	Exercises 339
	References 345

	10 Algorithm Design Techniques 349
	10.1 Greedy Algorithms 349
	10.1.1 A Simple Scheduling Problem 350
	10.1.2 Huffman Codes 353
	10.1.3 Approximate Bin Packing 359

	10.2 Divide and Conquer 367
	10.2.1 Running Time of Divide and Conquer Algorithms 368
	10.2.2 Closest-Points Problem 370
	10.2.3 The Selection Problem 375
	10.2.4 Theoretical Improvements for Arithmetic Problems 378

	10.3 Dynamic Programming 382
	10.3.1 Using a Table Instead of Recursion 382
	10.3.2 Ordering Matrix Multiplications 385
	10.3.3 Optimal Binary Search Tree 389
	10.3.4 All-Pairs Shortest Path 392

	10.4 Randomized Algorithms 394
	10.4.1 Random Number Generators 396
	10.4.2 Skip Lists 399
	10.4.3 Primality Testing 401

	10.5 Backtracking Algorithms 403
	10.5.1 The Turnpike Reconstruction Problem 405
	10.5.2 Games 407

	Summary 415
	Exercises 417
	References 424

	ll Amortized Analysis 429
	11.1 An Unrelated Puzzle 430
	11.2 Binomial Queues 430
	11.3 Skew Heaps 435
	11.4 Fibonacci Heaps 437
	11.4.1 Cutting Nodes in Leftist Heaps 430
	11.4.2 Lazy Merging for Binomial Queues 441
	11.4.3 The Fibonacci Heap Operations 444
	11.4.4 Proof of the Time Bound 445

	11.5 Splay Trees 447
	Summary 451
	Exercises 452
	References 453

	12 Advanced Data Structures and Implementation 455
	12.1 Top-Down Splay Trees 455
	12.2 Red Black Trees 459
	12.2.1 Bottom-Up Insertion 464
	12.2.2 Top-Down Red Black Trees 465
	12.2.3 Top-Down Deletion 467

	12.3 Deterministic Skip Lists 471
	12.4 &A-Trees 478
	12.5 Treaps 484
	12.6 k-d Trees 487
	12.7 Pairing Heaps 490
	Summary 496
	Exercises 497
	References 499


